CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 23(6)

Effects of Water Stress on Carbon Exchange Rate and Activities of Photosynthetic Enzymes in Leaves of Sugarcane (Saccharum Sp.)

YC Du, Y Kawamitsu, A Nose, S Hiyane, S Murayama, K Wasano and Y Uchida

Australian Journal of Plant Physiology 23(6) 719 - 726
Published: 1996


The responses of carbon exchange rate (CER), stomatal conductance (gs), activities of phosphoenolpyruvate carboxylase (PEPcase), NADP malic enzyme (NADP-ME), ribulose-1,5- bisphosphate carboxylase (Rubisco), fructose-1,6-bisphosphatase (FBPase) and pyruvate, orthophosphate dikinase (PPDK), and contents of chlorophyll (Chl) and total soluble protein (Tsp) in leaves of sugar cane (Saccharum sp. cv. NiF4) to gradually developed water stress were investigated. The initial inhibitions of CER, gs, activities of the photosynthetic enzymes and contents of Chl and Tsp were observed from leaf water potentials (Ψw) of -0.37 MPa. During water stress, CER and gs, decreased in a non-linear way, activities of the five enzymes and contents of Chl and Tsp decreased linearly with decreasing leaf Ψw. The changes of gs the photosynthetic enzymes, Chl and Tsp were highly related to the changes of CER. The decline in CER during water stress was caused by both stomatal and non- stomatal limitations. Above leaf ยจw of -0.85 MPa, the decline in CER was caused by stomatal closure, below -0.85 MPa, the decline in CER was caused by non-stornatal limitation. Among non-stomatal components, PPDK activities decreased 9.1 times during water stress, much more than other enzymes which decreased from 2 to 4 times. Measured PPDK activities were only a little higher than the corresponding CER values at various leaf Ψw suggesting that PPDK is very likely to be the limiting enzyme to photosynthesis under water stress.

Full text doi:10.1071/PP9960719

© CSIRO 1996

blank image
Subscriber Login

PDF (504 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016