CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate reproductive science and technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>   Contents Vol 7(3)

Ultrastructural and functional features of the developing mammalian heart: a brief overview

JJ Smolich

Reproduction, Fertility and Development 7(3) 451 - 461
Published: 1995

Abstract

The heart undergoes marked ultrastructural alterations during fetal and postnatal development. Early in fetal development, cardiac myocytes contain abundant pools of glycogen, scattered mitochondria and sparse, peripheral myofibrils. Transverse tubules are absent, and sarcoplasmic reticulum and intercalated discs are poorly developed. During late fetal and early postnatal development, myofibrils extend into the myocyte interior and attain a mature appearance, and the glycogen pools are reduced in size. In addition, transverse tubules develop and the morphological appearance of the sarcoplasmic reticulum and intercalated disc becomes increasingly complex. Experimental studies in sheep, corroborated by clinical studies in humans, also point to marked functional changes during development. In the fetus, the right ventricle is the dominant pumping chamber because right ventricular output exceeds left ventricular output, while pulmonary arterial and aortic pressures are similar. This functional difference is reflected in myocardial blood flow patterns, with blood flow to the right ventricle exceeding that to the left ventricle. The ventricular outputs equalize after birth, but a functional left ventricular dominance rapidly emerges following a postnatal increase in systemic vascular resistance and a decrease in pulmonary vascular resistance. This postnatal switchover in functional dominance is accompanied by a corresponding alteration in the relative level of ventricular myocardial blood flows. Consistent with right ventricular dominance in utero, myocytes in the right ventricle of the fetal sheep are larger and contain more myofibrillar material than those in the left ventricle. Left ventricular myocytes become larger than right ventricular myocytes after birth, but this adaptation to altered postnatal haemodynamics requires some weeks to become fully established.



Full text doi:10.1071/RD9950451

© CSIRO 1995

blank image
Subscriber Login
Username:
Password:  

 
PDF (1.3 MB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016