CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 37(1)

Soil organic carbon dynamics under long-term sugarcane monoculture

J. O. Skjemstad, J. A. Taylor, L. J. Janik and S. P. Marvanek

Australian Journal of Soil Research 37(1) 151 - 164
Published: 1999

Abstract

Comparisons of soil samples from virgin sites or sites recently planted to sugarcane (new) with sites that had been under cane production for many years (old) were made to investigate the potential impact of cane production on soil organic carbon (OC) levels and chemistry. The comparisons showed that very little change had occurred in total OC and in ‘light’ fraction (<1·6 Mg/m3). Increasing pyrophosphate extractability throughout the profile at some sites, as a result of cultivation, however, suggested that the organic matter generally became more ‘humified’ with long-term cane production. Evidence is presented for a redistribution of OC within profiles under cane production. Old, well-established cane sites had soils with lower OC levels in the surface horizons and higher levels in the subsoils relative to new sites. The overall chemistry of the soil organic matter, as indicated by solid state 13C nuclear magnetic resonance spectroscopy, did not change significantly at each site even though between site differences were large. Some soils contained substantial amounts of charcoal which was of pre-cane origin. In some of the coarse-textured soils, smaller amounts of charcoal produced during the burning of cane appeared to accumulate below the A1 horizons in the profiles. It also appeared likely that the redistribution of carbon in the upper horizons of some soils resulted from the movement of charcoal within the profile, probably as a result of tillage.

Keywords: extractable soil organic carbon, yield decline, charcoal, char, CP/MAS 13C NMR, photo-oxidation.



Full text doi:10.1071/S98051

© CSIRO 1999

blank image
Subscriber Login
Username:
Password:  

 
PDF (308 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015