CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
New Editor-in-Chief
Editorial Board
Contacts
For Advertisers
Content
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 40(3)

Assessment of peroxide oxidation for acid sulfate soil analysis. 2. Acidity determination

Nicholas J. Ward, Leigh A. Sullivan, Richard T. Bush and Chuxia Lin

Australian Journal of Soil Research 40(3) 443 - 454
Published: 07 May 2002

Abstract

Total sulfidic acidity (TSA) and total potential acidity (TPA) are derived from peroxide oxidation of acid sulfate soil materials (ASS), and are measures of the sulfidic acidity and the net acidity (net acidity = sulfidic acidity + actual acidity – acid neutralising capacity), respectively. The TSA and TPA of 4 ASS materials were determined using a variety of peroxide oxidation procedures and compared with the sulfidic acidity and net acidity derived from the use of an acid–base accounting model. TSA and TPA values both varied greatly with each peroxide oxidation method used, and both measures were found to substantially underestimate (i.e. by 23–85%) both sulfidic acidity (as determined from the chromium reducible sulfur content) and net acidity (as determined by acid–base accounting). A major cause of this underestimation of acidity was the retention of acidity through the precipitation of jarosite during peroxide oxidation. Substantial clay mineral dissolution appears to have occurred during peroxide oxidation of the ASS materials, as indicated by increased soluble aluminium. Such dissolution may contribute to the underestimation of both sulfidic and net acidity for the ASS materials using peroxide oxidation methods. The loss of acidity to the atmosphere was identified as a possible additional interference. This study shows the peroxide oxidation methods examined here are subject to substantial interferences, which caused large underestimations of acidity, and consequently, are unable to reliably provide accurate measurements of sulfidic and net acidity in ASS materials.

pyritic sulfur, total potential acidity, total sulfidic acidity, net acidity, jarosite, acid budget, acid neutralising capacity.
Keywords: pyritic sulfur, total potential acidity, total sulfidic acidity, net acidity, jarosite, acid budget, acid neutralising capacity.



Full text doi:10.1071/SR01019

© CSIRO 2002

blank image
Subscriber Login
Username:
Password:  

 
PDF (178 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014