CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


Article << Previous     |     Next >>   Contents Vol 42(6)

Soil properties in and around acid sulfate soil scalds in the coastal floodplains of New South Wales, Australia

Mark A. Rosicky A C, Leigh A. Sullivan A, Peter G. Slavich B, Mike Hughes B

A Centre for Acid Sulfate Soil Research, Southern Cross University, Lismore, NSW 2480, Australia.
B New South Wales Agriculture, Wollongbar Agricultural Institute, Bruxner Highway, Wollongbar, NSW 2477, Australia.
C Corresponding author; email: mrosic10@scu.edu.au
PDF (182 KB) $25
 Export Citation


Soil profiles in 10 persistently bare areas (i.e. scalds), mainly located in coastal backswamps of New South Wales, Australia, were examined for chromium-reducible sulfur content and selected chemical properties. At 5 of the sites, the adjacent paddocks with vegetation cover were also examined. All of the tested sites had been affected by the extensive drainage of the surrounding acid sulfate soil (ASS) landscapes and the consequent oxidation of pyrite. All sites had low pH values in the surface soil layers and these low pH values extended for up to 150 cm into the underlying unoxidised blue/grey pyritic estuarine gels. This can be attributed to the downward diffusion of acidity, either produced in the overlying oxidised zones of these soils or transported laterally across the landscape to these low-lying areas. Acidified unoxidised pyritic zones 120 cm thick can evidently form within several decades after drainage disturbance. At the scalded sites the depth from the soil surface to the main pyritic zone varied from the surface to >200 cm depth, indicating that this variable is not critical to ASS scald formation. For most of the sites examined, the chromium-reducible sulfur contents in the surface soil layers were appreciably higher than those in the immediately underlying soil layers. In most of the vegetated sites the chromium-reducible sulfur content in the surface layers was considerably higher than for the adjacent scalded site. The conditions necessary for pyrite formation (i.e. adequate supplies of organic matter, soluble iron, sulfate, and waterlogging) were found to exist at all sites, and the pyrite accumulations in these surface soil layers are considered to be neo-formed. The vegetated soil-profile pyrite and pH results were very similar to their scalded counterparts except that they had an extra 20–40 cm layer of vegetation and mulch that was missing from the scalded profiles. This indicates that there is considerable potential for more extensive scalding in these ASS areas.

Keywords: subsurface pyrite, surface pyrite, pyrite oxidation, pyrite re-formation, acid sulfate soil pH, backswamp management, backswamp drainage.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014