CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


Article << Previous     |     Next >>   Contents Vol 43(6)

Modelling phosphorus exports from rain-fed and irrigated pastures in southern Australia

D. Nash A B C, L. Clemow A, M. Hannah A, K. Barlow A, P. Gangaiya A

A Department of Primary Industries – Ellinbank, RMB 2460 Hazeldean Rd, Ellinbank, Vic. 3821, Australia.
B eWater CRC, University of Canberra, GPO Canberra, ACT 2601, Australia.
C Corresponding author. Email: David.Nash@dpi.vic.gov.au
PDF (272 KB) $25
 Export Citation


Pasture-based grazing systems contribute to the excessive nutrients found in some streams in south-eastern Australia. This study investigated phosphorus (P) exported in runoff from a rain-fed dairy pasture (Darnum) and 4 bays of irrigated dairy pasture (MRF). Runoff was monitored for 7 years at Darnum and 2 years at the MRF to identify factors associated with the variation in total P (TP) concentrations between events.

The flow-weighted mean annual P concentrations in runoff varied between 3.3 and 28.2 mg TP/L for Darnum and 6.2 and 31.5 mg TP/L for the MRF. The relationships between TP concentrations in runoff and days between fertiliser application and runoff, days between grazing and runoff, and total storm flow were examined using an additive component model that explained 61% and 70% of the variation in log-transformed TP for Darnum and the MRF, respectively. The interval between application of fertiliser and runoff and the effect of year were highly significant and explained most of the variation in TP. Grazing and fertiliser application were identified as the major factors that may affect TP concentrations that the land manager can control (preventable). The estimates of year effect (i.e. the component of TP not explained by the other variables and over which the land manager had no apparent means of control) ranged from 1.60 mg (s.e. 1.99) to 7.14 mg (s.e. 1.90) TP/L in non-drought years (>45 kL/ha runoff annually). The year effect averaged 5.7 and 6.9 mg TP/L for Darnum and the MRF, respectively. It is shown that an additive component model provides a useful structure for investigating similar, field-scale data.

Keywords: phosphorus, exports, runoff, modelling, Australia, fertiliser.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015