CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

Now Online

Land Resources Surveys


Article << Previous     |         Contents Vol 45(4)

Modelling DCD effect on nitrate leaching under controlled conditions

Iris Vogeler A C, Adeline Blard B, Nanthi Bolan B

A HortResearch, Palmerston North, New Zealand.
B Institute of Natural Resources, Massey University, New Zealand.
C Corresponding author. Email: ivogeler@hortresearch.co.nz
PDF (211 KB) $25
 Export Citation


Effects of nitrogen losses through nitrate leaching are one of the major environmental issues worldwide. To determine the potential effect of dicyandiamide (DCD), a nitrification inhibitor, on the transformation of urea nitrogen and subsequent nitrate leaching, incubation and column leaching experiments were performed. Tokomaru silt loam soil was treated with urea, DCD, or urea plus DCD. A control was also used.

In the laboratory incubation experiment, the conversion of urea to ammonium (i.e. ammonification process or urea hydrolysis) occurred within a day, thereby increasing the soil pH from 5.8 to 6.9. DCD did not affect the ammonification process. However, DCD did slow down the subsequent oxidation of ammonium to nitrate (i.e. nitrification process). The half-life time of ammonium in this soil was increased from 9 days for the urea treatment to 31 days for the urea + DCD treatment. The production of nitrate was 5 times slower when DCD was added.

In the leaching experiments, half the columns were leached after 1 day of incubation (Day 1), the other half 7 days later (Day 7). For Day 1, no significant differences in nitrate leaching could be seen between the treatments, as the nitrification had not yet taken place. For Day 7, DCD decreased nitrate leaching by 71% with a corresponding decrease in nitrate-induced cation leaching, including ammonium. Thus, DCD seems to be effective in decreasing both ammonium and nitrate leaching, but its high solubility and thus mobility could be a limitation to its use.

The convection–dispersion equation, including source–sink terms for nitrogen transformations, ammonification, and nitrification rate constants, and a factor for nitrification inhibition by DCD, accounting for degradation and efficiency of DCD, could be used reasonably well to simulate nitrate leaching from the column leaching experiments. However, model parameter values for nitrification rate, and efficiency and decay rate for DCD, were different from those obtained from the incubation experiments, which was probably because of the difference in water content of soil between the incubation and leaching experiments.

Keywords: CDE (convection disperion equation), DCD decay rate, incubation, leaching experiment, ammonium.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015