CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 46(7)

Assessment of nitrogen losses from urea and an organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions

Janice Asing A D, S. Saggar B, Jagrati Singh B, Nanthi S. Bolan C

A Institute of Natural Resources, Massey University, New Zealand.
B Landcare Research, Palmerston North, New Zealand.
C Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia.
D Corresponding author. Email: J.Asing@massey.ac.nz
 
PDF (234 KB) $25
 Export Citation
 Print
  


Abstract

Urea and organic manures such as ‘Garden galore’ (GG) are used to supply nitrogen (N) in vegetable farming and floriculture systems in New Zealand. However, a significant amount of the applied N is lost to the atmosphere via nitrous oxide (N2O) and ammonia (NH3) emissions, and leached to surface and ground water as nitrate (NO3) contributing to environmental degradation such as global warming and eutrophication. One of the mitigation options to reduce these losses is to use nitrification inhibitors (NI).

Glasshouse and laboratory incubation experiments were conducted under controlled moisture and temperature conditions to determine the effects of an NI, dicyandiamide (DCD), on N losses from urea and GG applied to lettuce grown in a Manawatu sandy soil. Nitrogen and DCD were applied at the rates of 9 and 1.3 g/m2, respectively, and the gaseous emission of N2O and NH3 were monitored over a 5-week period using a closed-chamber technique. At the end of the experiment the lettuce plant shoots and roots were harvested, and analysed for N concentration. Soils were leached with deionised water and leachates were analysed for ammonium (NH4+) and NO3.

The results showed greater loss of N as NH3 than N2O and the effect was more pronounced in the case of urea. Addition of DCD significantly reduced N2O emissions from both urea and GG, and increased NH3 emissions from both urea and GG, with the increase being significant only for urea. Addition of DCD maintained higher soil NH4+ concentration and lower NO3 concentration than without DCD. Overall, DCD was effective in reducing N losses of N2O emissions and NO3 leaching. Urea application resulted in shoot tip burning and the symptoms were enhanced with the addition of DCD. There was no significant effect of DCD addition on lettuce yield.

Keywords: ammonia, DCD, Garden galore, nitrification inhibitor, nitrate leaching, nitrous oxide, ammonium, nitrate.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014