CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Now Online

Land Resources Surveys


 

Article << Previous     |     Next >>   Contents Vol 32(4)

Measurement of aggregate breakdown under rain - Comparison with tests of water stability and relationships with field measurements of infiltration

RJ Loch and JL Foley

Australian Journal of Soil Research 32(4) 701 - 720
Published: 1994

Abstract

This paper reports comparisons between aggregate breakdown on wetting by rainfall with breakdown measured by a range of alternative methods. It also reports correlations between measured breakdown and steady infiltration rates of simulated rain of high and low energy, and hydraulic conductivities of surface seal layers formed under high energy rain. A wide range of soils in eastern Australia were studied. Highly significant correlations were found between measurements of aggregate breakdown to < 125 µm caused by rainfall wetting and both steady infiltration rates and hydraulic conductivities. Significant, but poorer correlations were found between steady infiltration rates and breakdown resulting from immersion wetting. Deletion of swelling soils from the data set greatly improved correlations between steady infiltration rates of high energy rain and breakdown measured by both immersion and tension wetting, showing that these methods of wetting ace particularly inappropriate for swelling soils. No correlation was found between infiltration rates and measured clay dispersion. Different relationships between the proportion of particles (%) < 125 µm at the soil surface (P125) and steady infiltration rates of low and high energy rain indicated that compaction of the soil surface layer, rather than increased aggregate breakdown, is a major cause of surface sealing by raindrop impacts. Measurements of fall cone penetration confirmed that drop impacts had compacted the surface layer. Suctions across the surface seal were related to P125 in that layer, and the relationship obtained was used in calculating hydraulic conductivities. The results confirm that measurement of aggregate breakdown under rainfall wetting produces results of much greater relevance to soil behaviour under field conditions than do tests based on immersion and tension wetting. Keywords: Soil-Erosion Processes; Splash Detachment; Surface Seals;



Full text doi:10.1071/SR9940701

© CSIRO 1994

blank image
Subscriber Login
Username:
Password:  

 
PDF (832 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014