CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > International Journal of Wildland Fire   
International Journal of Wildland Fire
http://www.iawfonline.org/
  Published on behalf of the International Association of Wildland Fire
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
20-Year Author Index
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with CP
blank image
facebook twitter youtube

 

Article << Previous     |         Contents Vol 16(4)

Sensitivity of a surface fire spread model and associated fire behaviour fuel models to changes in live fuel moisture

W. Matt Jolly

USDA Forest Service, RMRS, Fire Sciences Laboratory, Missoula, MT, USA. Email: mjolly@fs.fed.us
 
PDF (431 KB) $25
 Export Citation
 Print
  


Abstract

Fire behaviour models are used to assess the potential characteristics of wildland fires such as rates of spread, fireline intensity and flame length. These calculations help support fire management strategies while keeping fireline personnel safe. Live fuel moisture is an important component of fire behaviour models but the sensitivity of existing models to live fuel moisture has not been thoroughly evaluated. The Rothermel surface fire spread model was used to estimate key surface fire behaviour values over a range of live fuel moistures for all 53 standard fuel models. Fire behaviour characteristics are shown to be highly sensitive to live fuel moisture but the response is fuel model dependent. In many cases, small changes in live fuel moisture elicit drastic changes in predicted fire behaviour. These large changes are a result of a combination of the model-calculated live fuel moisture of extinction, the effective wind speed limit and the dynamic load transfer function of some of the fuel models tested. Surface fire spread model sensitivity to live fuel moisture changes is discussed in the context of predicted fire fighter safety zone area because the area of a predicted safety zone may increase by an order of magnitude for a 10% decrease in live fuel moisture depending on the fuel model chosen.

Keywords: fire behaviour models, live fuel moisture, live fuel moisture of extinction, safety zones.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014