CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Wildlife Research   
Wildlife Research
Journal Banner
  Ecology, management and conservation in natural and modified habitats
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow CSIRO Wildlife Research
blank image
All volumes of CSIRO Wildlife Research are online and available to subscribers of Wildlife Research.


Article << Previous     |     Next >>   Contents Vol 29(6)

Emerging epidemiological patterns in rabbit haemorrhagic disease, its interaction with myxomatosis, and their effects on rabbit populations in South Australia

Gregory Mutze, Peter Bird, John Kovaliski, David Peacock, Scott Jennings and Brian Cooke

Wildlife Research 29(6) 577 - 590
Published: 30 December 2002


The impact of rabbit haemorrhagic disease (RHD) on wild rabbit populations was assessed by comparing population parameters measured before the introduction of RHD into Australia in 1995 with population parameters after RHD. We used data from an arid inland area and a moist coastal area in South Australia to examine the timing and extent of RHD outbreaks, their interaction with myxomatosis and their effect on breeding, recruitment and seasonal abundance of rabbits. From this we propose a generalised conceptual model of how RHD affects rabbit populations in southern Australia. RHD decreased long-term average numbers of rabbits by 85% in the arid area. In the coastal area, RHD decreased numbers of rabbits by 73% in the first year but numbers gradually recovered and were only 12% below pre-RHD numbers in the third year. Disease activity generally begins a month or two after the commencement of breeding in autumn or winter, peaks in early spring and ceases to be apparent in summer. Where the disease is most active, the pattern of population change is almost the inverse of the former pattern. During the breeding season, RHD severely suppresses rabbit numbers. Compensatory recruitment of late-born young, protected by maternal antibodies until the disease becomes inactive at the end of spring (also the end of breeding), allows the observed rabbit abundance to increase during summer, albeit to lower levels than before RHD. Maternal antibodies are lost during summer and the population becomes susceptible to RHD. The seasonal peak in myxomatosis activity is pushed back from late spring to early summer or autumn. Survivors of myxomatosis breed after opening rains in autumn but many succumb to RHD before raising their litters. The reduced abundance of rabbits and changed pattern of seasonal abundance have potential consequences for vegetation recovery.

Full text doi:10.1071/WR00100

© CSIRO 2002

blank image
Subscriber Login

PDF (1 MB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016