CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Wildlife Research   
Wildlife Research
Journal Banner
  Ecology, Management and Conservation in Natural and Modified Habitats
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 35(4)

A comparison of mark–recapture distance-sampling methods applied to aerial surveys of eastern grey kangaroos

Rachel M. Fewster A C, Anthony R. Pople B

A Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
B Biosecurity Queensland, Department of Primary Industries and Fisheries, GPO Box 46, Brisbane, Qld 4001, Australia.
C Corresponding author. Email: r.fewster@auckland.ac.nz
PDF (494 KB) $25
 Export Citation


Aerial surveys of kangaroos (Macropus spp.) in Queensland are used to make economically important judgements on the levels of viable commercial harvest. Previous analysis methods for aerial kangaroo surveys have used both mark–recapture methodologies and conventional distance-sampling analyses. Conventional distance sampling has the disadvantage that detection is assumed to be perfect on the transect line, while mark–recapture methods are notoriously sensitive to problems with unmodelled heterogeneity in capture probabilities. We introduce three methodologies for combining together mark–recapture and distance-sampling data, aimed at exploiting the strengths of both methodologies and overcoming the weaknesses. Of these methods, two are based on the assumption of full independence between observers in the mark–recapture component, and this appears to introduce more bias in density estimation than it resolves through allowing uncertain trackline detection. Both of these methods give lower density estimates than conventional distance sampling, indicating a clear failure of the independence assumption. The third method, termed point independence, appears to perform very well, giving credible density estimates and good properties in terms of goodness-of-fit and percentage coefficient of variation. Estimated densities of eastern grey kangaroos range from 21 to 36 individuals km–2, with estimated coefficients of variation between 11% and 14% and estimated trackline detection probabilities primarily between 0.7 and 0.9.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015