CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Zoology   
Australian Journal of Zoology
Journal Banner
  Evolutionary, Molecular and Comparative Zoology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Author Instructions
Submit Article
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 14(2)

An attempt to control ragwort in Australia with the cinnabar moth, Callimorpha jacobaeae (L.) (Arctiidae : Lepidoptera)

GF Bornemissza

Australian Journal of Zoology 14(2) 201 - 243
Published: 1966


This paper describes research on the cinnabar moth, Callimorpha jacobaeae, introduced from England and Italy to Australia for the control of the poisonous weed, ragwort (Senecio jacobaea). Studies were conducted for six seasons in a high rainfall area of southern Gippsland, Vic., where the impact of ragwort infestation on dairy pastures was severe. Callimorpha has a univoltine life cycle with an obligatory pupal diapause during winter. The termination of this diapause in introduced stocks was successful to a limited extent only, and changes in its duration required for synchronization with the southern hemisphere seasons adversely affected the reproductive capacity of emerging females. The larval progeny of Italian stock failed to survive in the field, and disappeared completely within the first season, whereas those of English origin were reasonably successful. In view of the low reproductive rate of Callimorpha and because of its numerous insect enemies, breeding was carried out in the field using techniques designed to provide protection from the locally abundant predators. An attempt was also made to assess factors playing a role in its numerical regulation. The larvae were liable to heavy mortality in the field due to the combined effect of fungal infections, insect predators, and parasites, and also to a virus disease introduced in a latent state with the insect. At an early stage of this work (the second Australian generation), a nuclear polyhedral virus epizootic destroyed 90% of the larval population. The fifth Australian generation was the last to survive in the field. Of the larval predators, the mecopteran Harpobittacus nigriceps caused the most serious mortality. This predator, common in all ragwort-infested areas of Victoria, showed a zonal pattern in its density distribution; the high density zones often overlapped sites occupied by larval colonies of the cinnabar moth. The larvae of Callimorpha were more frequently taken by Harpobittacus than tipulid flies (Macromastix spp.) which are normally its principal prey; the abundance and distribution of these flies was also studied. The abundance of both Harpobittacus and Macromastix, was influenced by weather factors, resulting in a marked annual fluctuation in their numbers. At times of high Harpobittacus abundance, mortality in larval colonies of Callimorpha due to this predator averaged over 80%, with extremes of 90-100% being observed frequently. The larvae of Callimorpha were found to be potentially efficient in controlling ragwort. The viable seed production of severely attacked plants was reduced, following defoliation and destruction of the primary flowerheads, by an average of over 98%. However, taking all factors into account, it is unlikely that Callimorpha could exert useful control of ragwort in Australia. There seems little chance that high larval densities, necessary to suppress seeding by ragwort, could be maintained in face of heavy predation. As the data presented in this paper indicate, Harpobittacus alone would be capable of preventing the effective establishment of C. jacobaeae in this country.

Full text doi:10.1071/ZO9660201

© CSIRO 1966

blank image
Subscriber Login

PDF (2.1 MB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015