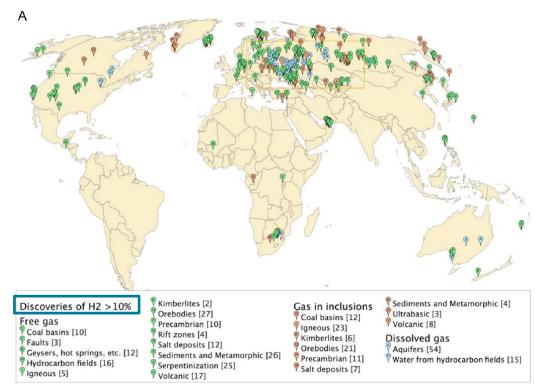

Gold (H₂) rush:

Risks and uncertainties in exploring for naturally occurring $\rm H_2$


Linda Stalker | May 2022 & Talukder, Strand, Josh & Faiz

Australia's National Science Agency

Skewed datasets

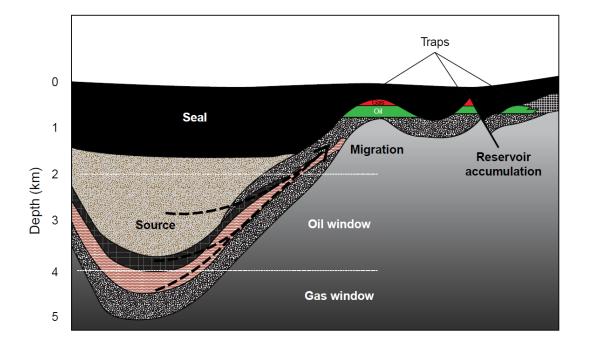
- This study only looks at >10% $\rm H_2$

Old datasets

- Usually means data is a bit more unconstrained

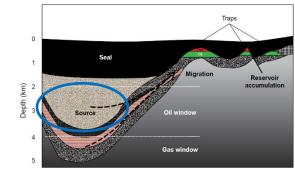
Not looking...

- We weren't looking for tight/shale gas
- Didn't check for H₂ or He in natural gas


Healthy scepticism

- Abiogenic gas becomes popular (again....!)

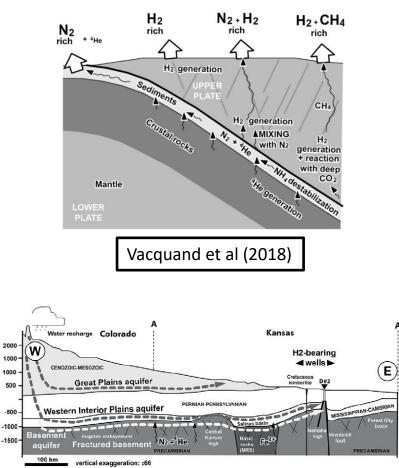
Ref. Zgonnik, 2020


An Exploration Mindset

- Source
- Migration
- Trapping & Accumulation
- Leakage

- Ancient rocks
- Ophiolites/serpentinisation
 - Ultramafics
 - Mid-ocean ridge basalt (MORB)
- Volcanics/arcs
- Role of iron-bearing rocks
- Magmatic/primordial
- Radiolysis
- Organics and biological

- Mechanisms of generation of hydrogen
 - Heat/temperature
 - Depositional age
 - Structural impacts/metamophism
 - Chemistry
 - Rates & timing
 - Co-produced materials & proxies


• Etc.

Hypotheses

- Buoyancy
- Pressure changes
- Dissolved in water
- Importance of wettability
- All manner of fault-based unknowns....
- Seepage and leakage indicators
- How much is lost in diagenesis/mineral reactions/microbiology

Guelard et al. 2017

Wettability & Solubility

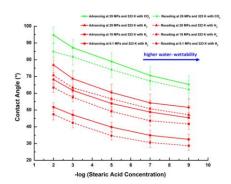


Figure 1. Brine contact angles on the quartz surface in H₂-atmosphere as a function of stearic acid concentration. The green lines show literature data for CO, taken from AH et al. (2019). Where wretability increases to the right as indicated by the blue arrow. Note that stearic acid concentration is plotted as the negative decadic logarithm on the x axis, that is, stearic acid concentration decreases exponentially toward the right side.

Iglauer et al. (2020)

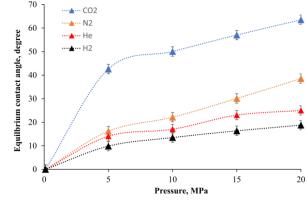


Fig. 1. Equilibrium brine contact angles for CO_2 , N_2 , He, and predicted equilibrium brine contact angles for H_2 on Basalt substrate as a function of pressure at constant temperature (323 K).

Al-Yaseri & Jha (2021)

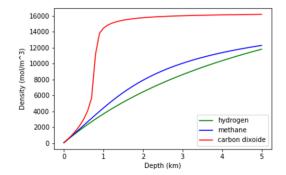
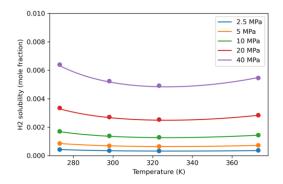
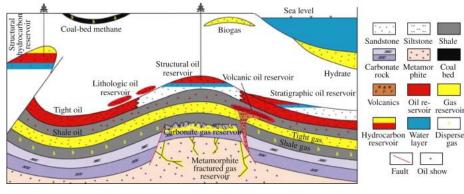


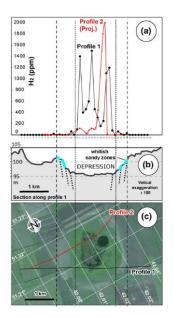
Figure 27: Comparison of molar density (in mo//m') of hydrogen (green curve), methane (blue curve) and carbon dioxide (red curve) as a function of depth, for a hydrostatic gradient of 10 MPa/km, and a geothermal gradient of 25 C/km, with an average surface pressure of 0.101325 MPa and an average surface temperature of 15C.



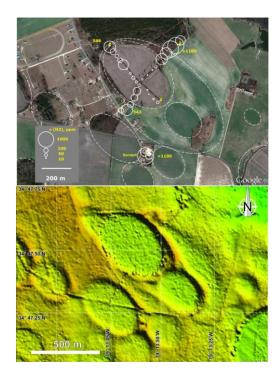

Figure 30: Solubility of hydrogen in water as a function of temperature, for various pressures. The solid lines are the representations of Li et al. (2018), and the dots are the experimental data of Wiebe and Gaddy (1934).

Ennis-King et al. (2021)

Trapping and accumulation


Barriers, traps and baffles....which work?

- Is it all vertical migration based
- Geometry and focal points? Concentration of fluids?
- Optimum depths for accumulation
 - Proximity to source
 - Proximity to trap
- Charge versus recharge important or essential?
- Phase free gas, dissolved, phase envelopes etc
- Role of minerals and clays on adsorption/alteration
- Does it only work for the tightest barriers (Mali dolerite sills example)
- Salt!
- Mass balance multiple source feed AND dynamic accumulation??



Caineng Zou, 2013

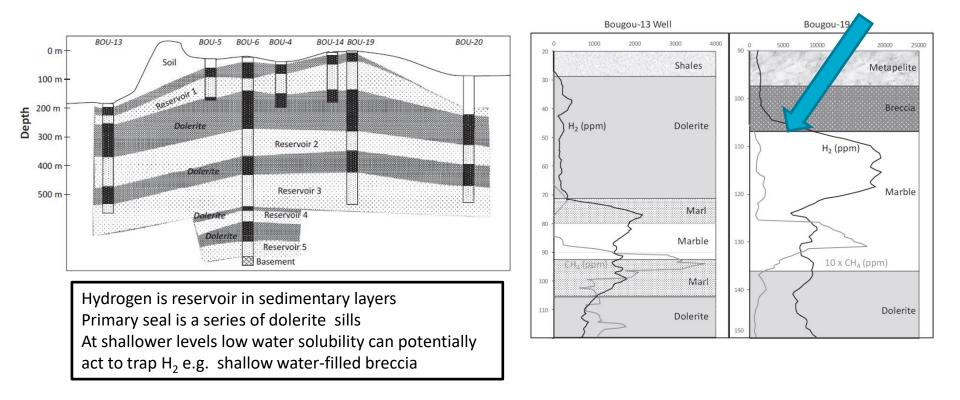
Seeps and leaks: enigmatic surface features

European Craton in Russia, Larin et al. 2015

Carolina Bay, Zgonnik et al (2015)

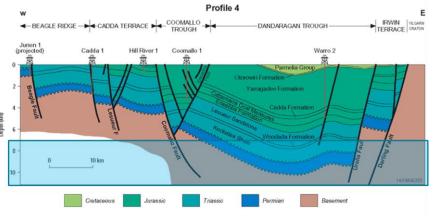
 AKA fairy circles, H₂ seepage occurs mainly through the peripheral sand rim.

Features only occur where the weathered bedrock below the soil consists of unconsolidated granular sediments (Larin et al. 2015; Zgonik et al., 2015)


- 2. These features can be everywhere...
- 3. See Frery et al 2021 for more info

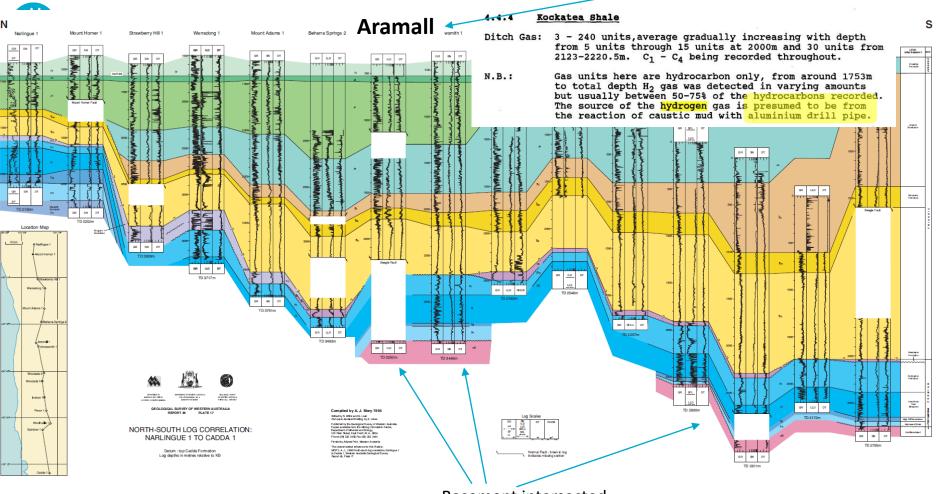
Pingrup, WA And many other examples

Mali Case Study (Prinzhofer et al, 2018)

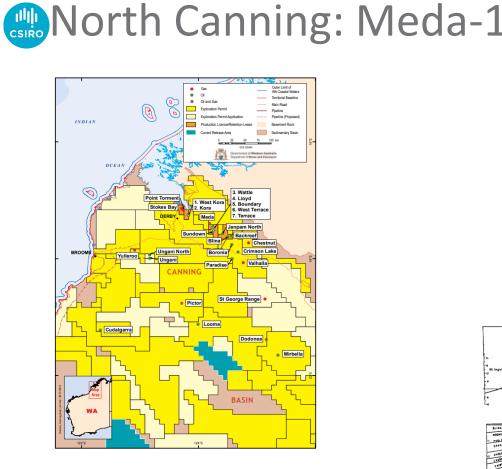

Target	Definition	Basin scale/ craton scale	Prospect	Tools & sensors
Leakage indicators	Fairy circles, faults reaching surface, evidence of hydrogen generation	Potentially many, may not be related to hydrogen, may be hydrology	Zero –many: may not be related to hydrogen, may be hydrology	Google Earth!
# sampling targets	i.e. leakage indicators and observed accounts combined	Could be hundreds – could be none – the cover will be critically important.	From zero to many – could be difficult to rank without other information	GA and State Geological Survey information, GIS evaluations. Industry work released, journals and reports
H ₂ observed	Documented evidence of H_2 , or He (proxy) in well completion reports, or other sample reporting	Data mining of well completion reports and other databases show indicators – poorly curated	Well samples with data reported, depths and formations – integration with surface indicators	Historical WCRs, State, Fed, industry databases. Laboratory records. New lab practises, field sampling
Source	Geological information that fits with any (or several) of the possible sources of H ₂ e.g. Basement/mantle, greenstones/ultramafics, radiolysis/radioactive, other Fe-rich materials, (micro)biological	Many possible sources. May be mixed sources, co-contributions from more than one source	Absent to multiple sources depending on location	Inferred from new sample analyses, older geological data, hypotheses and models based on other examples. May require lab experimentation, modelling and analogues in the absence of modern analyses.
Potential traps/seals	Mechanism that retards or reduces migration & escape of H_2 . From thick mudstones, salt, igneous intrusions, or structural/stratigraphic geology	May be localised. Hard to define when mechanisms of migration/ accumulation/ trapping are poorly understood and unpredictable. General geological information	Geological evidence of a barrier from existing geological/seismic data & any well data	State, Fed, industry databases, seismic data packages other information. Well logs, GIS to define presence/absence of key geological features
Accumulation potential	A place in which hydrogen can migrate to and stay (relatively) in place. Where H_2 comes in faster than it leaks out (low flux to surface) – i.e. what might a reservoir look like?	May be localised, and at small scale relative to the area. Will provide some rationale as to potential areas to target for greater data acquisition. Depth of accumulation would be important to understand relative to source, migration and secondary effects	Geological evidence of a body of porous rock that can hold a volume of gas, defined by existing geological/seismic data & any well data. Gives enough information to define potential volumes of gas in place	State, Fed, industry databases, seismic data packages other information. Well logs, GIS to define presence/absence of key geological features
Accessibility	 (a) For testing/evaluation (b) For accessing/integrating with relevant infrastructure (c) Tenements/permits/resource conflicts 	 (a) Australian scale issues and access (b) Ability to bring gas to market (c) Provides focus areas within wide regions, can align access already granted 	Same issues as for the basin/craton scale.	Google Earth! And understanding of infrastructure, pipelines, points of utilisation, temporary or permanent storage of H ₂ prior to use or export

A template for identifying possible locations

Target	North Perth Basin	Yilgarn Craton	Kangaroo Is/ Yorke Peninsula	Lake Dora, South Canning	Amadeus Basin wells	Meda-1, North Canning
Leakage indicators	Many	Even more	Many	Several	Undetermined	Few, not close by
# sampling targets	Hundreds	Erm thousands	Many tens	A couple of dozen	Many including Mt Kitty 1 and Magee 1. Both showing helium, Mt Kitty showing hydrogen	Abandoned well site; possible surface features nearby
H ₂ observed	Yes, Aramall-1 WCR 50- 75% (not to mention Varma, Underschultz & al.)	Yes, recent Frogs Leg gold mine paper (Boreham et al, 2021) 19.9-68.7 mol% (and hydrocarbons)	Yes, Ward (1933) paper, WCR equivalents, 60-85% range	No, although I doubt anyone has looked	Yes, H ₂ present in some reservoirs Helium also observed	Significant H_2 locally in Meda-1. Numerous well tests, 2 with ~90% H_2
Source	Yilgarn Craton Basement Potential greenstones/ultramafics	Yilgarn Craton Basement Potential greenstones/ultramafics	Gawler Craton? Whatever is underneath the Adelaide Superbasin? Donington Granite was a potential radio-active source here?? Belpiro et al 1995 and Gehling et al 2011.	Pilbara Craton Basement, uranium, and probably others	? whatever basement is under the Amadeus Basin?	Kimberly Craton
Potential traps	Proven hydrocarbon traps	Evidence of intrusives and sediments/reservoirs (c.f. Prinzhofer et al, 2016 Mali case study)	Potential hydrocarbon- style traps	Potential hydrocarbon- style traps or salt-related traps	Proven hydrocarbon traps. Gillen salt formation also a proven hydrogen/helium trap from the Peter Haines publications, and other papers	Proven hydrocarbon traps nearby
Accessibility to (a) population/infr astructure	(a) Good (e.g) (b) No?	(a) Variable (e.g. Frog's leg close to Kalgoorlie infrastructure	(a) Good (b) doubtful	 (a) Not so much an unsealed road goes quite near 	(a) guessing not too handy	1. Quite remote, not too far from Derby



- Abundant leakage indicators
- H₂ find at Aramall-1 (50-75%) (north of Woodada)
- Source(s) of H₂
 - Serpentinization sweetspot at 7-12 km
 - Yilgarn basement adjacent/under?
 - Granite radiolysis potential
- Accumulation
 - Potential sandstones from Perth Basin development
- Trapping
 - Thick shales



East-west structural section across Dandaragan Trough and adjacent terraces. (Modified from Crostella, 1995; Song & Cawood, 2000)

Basement intersected

Company : West Australia	an Datualaum Dhu Tha			
	an Petroleum Pty Ltd.			
Well Name : Meda No. 1	See a start of the second start		1	
Well Location: 17° 24' 0	0" S 124 ⁰ 11' 30" E			
Interval Tested (Feet): 7	594-7669	6594-6695	5110-	-5113
Formation - Age & Name : De			1 1 2 2 1	
Type of Test : DST 6C	Complex	ditto DST 7C	L. Carb. DST	-Laurel 9
Flow Rate - Gas (MMCF/D) - Liquid (BBLS/D)			GCV	4
Date of Sampling		29-10-59	14-3	L1-58
Date of Analysis :		19- 2-59	19-1	L1-58
Analysis by, and Method:	BMR GC	BMR GC		A.G.L.
COMPONENT (MOLE %)				
Methane	75.2	56.7	0.5	0.4
Ethane	0.9	1.2	1.0	
Propane	0.14	0.37		
Isobutane	0.02	0.12		
N-Butane	0.02	0.09		
Isopentane			1 A A A A A A A A A A A A A A A A A A A	
N-Pentane				
2-Methyl Butane			1	
2-Methyl Pentane				
3-Methyl Pentane			4	
Hexane				
Heptanes+	10.4			
Nitrogen	19.4 3.1	21.2	0.5	0.5
Oxygen	3.1	11.2	0.5	0.5
Argon Hydrogen	and the state of the state of the	2.9	95.3	91.2
Hydrogen Helium		613	33.3	71.6
Carbon Monoxide				
Carbon Dioxide	1.5	6.5	3.7	3.6
Hydrogen Sulphide			5.7	5.0

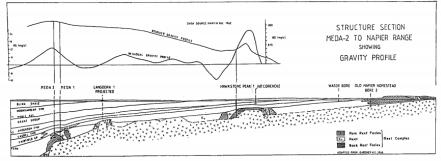


FIGURE 5 Geoseismic Structure Section Meda 2 to Napier Range The location of this section is shown in Fig. 4. It crosses buried palaeo-Langoora Island and fringing reefs, palaeo-Napier Straits, and mainland fringing reef in outcrop. Residual gravity positives mark the position of basement ridges and/or carbonate build-ups.

Gaps identified	Closing that gap
1. Lack of confirmatory data	i. Analogues and documented finds revisited
2. Lack of current practises for routinely analysing for hydrogen in well test fluids or production fluids	ii. How were early well tests characterised?What do we need to do differently to now(back to old methods)? Define the sampling and analytical protocol.
3. Need to confirm seep locations against existing observations to prove up potential for a hydrogen system	 iii. Seeps are confirmation of source generation mechanisms – find seeps to reduce risk. Then look at the underlying geology
4. Further define the key components of a hydrogen system	iv. What components are missing – is CH ₄ or other gases a good proxy to model a hydrogen system?

Check those assumptions!

Thank you

Energy Business Unit

Linda Stalker Senior Principal Research Scientist +61 8 6436 8909 +61 477 334 265 linda.stalker@csiro.au people.csiro.au/S/L/Linda-Stalker


Co-authors

Asrar Talukder

Julian Strand

Matt Josh

Mohinudeen Faiz

Boreham et al, 2021 APPEA 2021