Acknowledgement of Country

The University of Queensland (UQ) acknowledges the Traditional Owners and their custodianship of the lands on which we meet.

We pay our respects to their Ancestors and their descendants, who continue cultural and spiritual connections to Country.

We recognise their valuable contributions to Australian and global society.

The Brisbane River pattern from *A Guidance Through Time* by Casey Coolwell and Kyra Mancktelow.

Including Sub-surface Uncertainties in CCS Hub Investment Decision Making - A Case History.

Prof. Andrew Garnett, Iain Rodger, & Joe Lane

UQ Centre for Natural Gas. May 2023

UQ Centre for Natural Gas

Surat Hub Study Location

So, how much storage is there?

Static, corrected pore volume estimate

3 Gt

B. E. Bradshaw *et al.*, (2011).

Queensland CO2 Geological Storage Atlas

Suggests 100 million tonnes/year for 30 years!

About as useful as this:

https://www.bbc.com/news/uk-england-york-north-yorkshire-29126161

Concept: plateau and decline ...management options

Basis of Design for the Hub Size?

What is the *right-sizing* & *right-phasing* of investment in capture & transport?

....How do I avoid over (or under) build of Capture & Transport capacity? ...or,

... For a given capture rate, what is the *confidence that injection can be sustained ...*

[1] for the productive economic lifetime of the major capital assets?

[2] and, at or below an economic target e.g. UTC(\$/t)?

2- It's understanding injection uncertainty over time that counts ...

Consider well 'type curves'

#1 Single well ... (c.p.)

- Informed by wireline, dynamic analogues, models, and EWTs
- An initial injection rate (& unc. pdf)
- Pressure transient (build-up) and consequential injection decline factor (& unc. pdf)

#2 Multiple wells over time ...

- Informed by dynamic analogues, extended well tests & sector models
- Modification to initial rate (& its pdf) e.g. depending on cumulative injection to date
- Modification to decline rate (& its pdf) due to cross-well pressure interference over time (reservoir dependent)
- *REMEMBER* that space to drill / well count is constrained

Example – hyperbolic

500

400

300

100

100

150

200

Time (months)

250

300

350

30yrs, 75-170 tpd / well

80 to 180 wells for 5 Mtpa

50

100

150

200

Time (months)

250

300

50

es/day)

Rate (tor 007

q is rate $(q_i - initial rate)$ 1-b $q_i^{(1-b)}$ Q is cumulative injection at time t q =D_i is initial decline rate 9, b is decline exponent denotes pdf derived from data and multiple model runs Injection Rate (Di = 0.0001) - b = 0.027 wells for 5 Mtpa 27 wells for 5 Mtpa Forecast of Initial Decline b = 0.5-0.05 tonnes/day²) Forecast of Initial Decline Injection Rate (Di = 0.0002) (-0.1 tonnes/day²) Forecast of Initial Decline (-0.1 tonnes/day²) 10yrs, 240-350 tpd / well 10yrs, 240-260 tpd / well 66 to 40 wells for 5 Mtpa 60 to 66 wells for 5Mtpa (a)

Including Sub-surface Uncertainties in CCS Hub Investment Decision Making - A Case History

350

2- It's understanding injection uncertainty over time that counts ...

- "Drill" & install injection capacity (plus a redundancy)
- Inject: then drill more as decline tends to target rate
- Simulate this with initial and decline uncertainty pdfs
- Constrain well-count by surface & sub constraints
- Some scenarios will not be able to sustain the required rate (technical failure) TPOS

Including Sub-surface Uncertainties in CCS Hub Investment Decision Making - A Case History

- Build suitable cash-flow models
- Convert 'drilling sequence' into cash flow
- Calculate UTC or pre-tax RT Break-even price (\$/t)

THE UNIVERSITY

OF OUEENSLAND

- Repeat for all injection simulations
 - Constrain vs pre-defined max-UTC decision criteria
 - Some scenarios will be more than the max UTC (economic failure) EPOS

3 - Surat: simulated unc. & sequence for diff. project sizes

Post Study (II)

- Major geology revision (seq) Production data calibration
- New core-wireline correl'n Managed aquifer injection calib.

Pre Study (I)

Drillable Area Constrained

3 - Surat: simulated unc. & sequence for diff. project sizes

Post Study (II)

• Major geology revision (seq) • Production data calibration

Drillable Area Constrained

- New core-wireline correl'n Managed aquifer injection calib.
- 200 1.0 200 1.0 Probability of Success Probability of Success P10-P90 UTC P10-P90 UTC P25-P75 UTC P25-P75 UTC P50 UTC 0.8 160 P50 UTC 160 0.8 Injection UTC \$/tonne (including 'Technical Failures') Injection UTC \$/tonne (including 'Technical Failures') 0 6 Probability of Success (Injectivity Only) **Technical POS lower for** 120 larger projects (area 120 constraint on drilling) 0 Fobability (Injectiv 80 80 0.2 40 0.2 40 0.0 0 0.0 0 0 10 20 30 40 50 30 40 50 20 0 Project Size (Mtpa) Project Size (Mtpa) UTC uncertainty reduced (and lower)

Pre Study (I)

3 - Surat: simulated unc. & sequence for diff. project sizes

Post Study (II)

• Major geology revision (seq) • Production data calibration

Drillable Area Constrained

• New core-wireline correl'n • Managed aquifer injection calib.

How much capacity do we have? Depends what cost we can tolerate and how confident we want to be!

Pre Study (I)

What if confidence is not "high enough" for full hub investment?

Five main investment options

- 1. Take (share?) the risk ... Equiv. to changing your risk tolerance (TPOS, EPOS, UTC).
- 2. No further activity ... walk away
- 3. Invest in further dynamic appraisal (\$10s mIn) <u>focussed</u> on reducing uncertainty in LT decline factors: especially EWTs and interference test, possibly 3D seismic for res. architecture ... this is not "proving up"
- 4. Find and *dynamically* appraise more sites: a portfolio
- 5. <u>Phase</u> the hub development incrementally (appraise while developing, \$2 bln): build <5 Mtpa first and, with suitable monitoring and model updates, let that injection better define sustainable rate and decline ... may require over-sizing of a pipeline

Spend more on appraisal or take the risk and develop?

At any point

 $Risked Vaue, RV = POS \times NPV_{S} + (1 - POS) \times NPV_{f}$ The NPV if we choose to develop and the project is successful (+ve) The NPV if we choose to develop but the project 'fails' to sustain injection (-ve)

Value of Appraisal, VoA = RV (after appraisl) - RV (before appraisal) - Cost of Appraisal (AFR)

Assuming that new information from appraisal mainly changes the Probability of Success (POS) => (by the magic of algebra)

Note: *dynamic* appraisal investment de-risks the full hub not just storage, so:

- Justifiable UAC is likely much higher when considering the whole project (not just storage) since
 UTC_{transport} + UTC_{capture} >> UTC_{storage}
- NB: this doesn't consider another "poor outcome" where injection declines later than expected. Still positive NPV, but not optimal (missed opportunity)

Summing up

So how big (how many Mtpa) should I build my capture and transport infrastructure?

- 1) It depends ... on how much risk you want to take i.e. the risk that it will not be possible to sustain the injection of the captured rate for the life of the C&T assets.
- 2) You *can* evaluate this risk in a structured way *and* you need to focus on uncertainty not on answers
- 3) You should undertake a formal economic *Value of Information Appraisal* approach to investing in storage dynamic assessment
 - Capture and transport costs are in \$ billions and they scale with Mtpa
 - Dynamic appraisal costs are in \$10s millions
- 4) Dynamic appraisal (EWTs) not cheap ... but it's a lot cheaper than getting the size wrong.

This might seem obvious, but...

...apparently not to everyone

"we have seen \$100 million wasted on ZeroGen" - John-Paul Langbroek

https://www.theaustralian.com.au/news/bligh-says-ccs-spending-not-wasted/news-story/74c1fd7544c429f9b5f77a1553366745

Former long-serving Queensland premier Peter Beattie said Australia would be "crazy" not to invest in clean coal technology despite the high-profile failure of the \$4 billion ZeroGen coal gasification and carbon capture and storage project in central Queensland which he championed when he was in office.

https://www.afr.com/politics/peter-beattie-qld-crazy-not-to-back-clean-coal-20170224-gukapi

ZeroGen appraisal was successful – it demonstrated that it wasn't worth investing \$4 billion!

For the uninitiated ... appraisal does <u>not</u> mean spend money to "prove up" – it means spend money on key information to decide "whether or not" to develop.

Contact

Prof. Andrew Garnett, Iain Rodger, & Joe Lane UQ Centre for Natural Gas naturalgas@uq.edu.au +61 7 3346 4101

CRICOS 00025B • TEQSA PRV12080