CONTENTS

AUSTRALIAN CONTINENTAL MARGIN GEOLOGY

3 D. JONGSMA and P. PETKOVIC

13 L. TAYLOR and D. FALVEY

30 P. A. SYMONDS and P. J. CAMFRON

AUSTRALIAN CONTINENTAL MARGIN GEOLOGY

The Structure of the Naturaliste Plateau and Trough

Queensland Plateau and Coral Sea Basin, Stratigraphy, Structure and Tectonics

The Structure and Stratigraphy of the Carnarvon Terrace and Wallaby Plateau

BASIN GEOLOGY AND EXPLORATION — AUSTRALIA

42 P. R. EVANS

50 S. B. DE VINE and C. G. GATEHOUSE

58 M. SHIBAOKA and A. J. R. BENNETT

64 R. KAYAW NYFIN, L. McLEAN and B. J. WARRIS

73 J. W. SMITH, K. W. GOULD and D. RIGBY

78 D. KING and M. FAIYV

85 R. J. WHITTLE, B. E. LONG and R. A. PRAI

85 R. KYAW VEIN, L. McLEAN and Occurrence, Prediction and Control of Geopresses on the Northwest Shelf of Australia

94 H. McQUHAN

The Special Role of Stable Isotopes in Assessing Hydrocarbon Occurrences

BASIN GEOLOGY AND EXPLORATION — NEW ZEALAND

94 H. McQUHAN

Hydrocarbon Potential of the North Wanganui Basin, New Zealand

PRODUCTION CASE HISTORIES

105 C. I. WILLIAMS

114 N. E. TAYLOR

121 J. MUREADY

128 J. P. DUFEYSNE, J. GAUBERTHIER and R. SCHIAFFER

131 B. H. van HILDERBERK

137 B. L. HAMIL

142 J. W. BUTTERS

An Analysis of the Production Performance of the Windalia Sand Reservoir of the Barrow Island Oil Field

Halibut Field - Prediction of Reserves and Production Performance by Simulation

The Caroline Carbon Dioxide Field and Associated Carbon Dioxide Occurrences, Gambier Embayment, South Australia

PRODUCTION EQUIPMENT — LPG AND SUBSEA

128 J. P. DUFEYSNE, J. GAUBERTHIER and R. SCHIAFFER

131 B. H. van HILDERBERK

137 B. L. HAMIL

142 J. W. BUTTERS

New Development of the Tealare Natural Gas Liquefaction Process

Early Subsea Production System

Financing the Development of Australia's Petroleum and Mineral Industries

ENVIRONMENT

142 J. W. BUTTERS

Major Projects and the Environment

APCA acknowledges the support and assistance given to the 1976 APEA Conference by members of the Petroleum Exploration Society of Australia by their submission of technical papers for the Conference and the APEA Journal.
pressure decline suggests that the volume of gas in place at the Caroline well is of the order of several hundred BCF.

Table 2. Formation Water Analysis, Caroline No. 1.

<table>
<thead>
<tr>
<th></th>
<th>p.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>HCO</td>
<td>10784</td>
</tr>
<tr>
<td>Cl</td>
<td>1444</td>
</tr>
<tr>
<td>SO</td>
<td>174</td>
</tr>
<tr>
<td>Ca</td>
<td>37</td>
</tr>
<tr>
<td>Mg</td>
<td>8</td>
</tr>
<tr>
<td>Na</td>
<td>5830</td>
</tr>
<tr>
<td>K</td>
<td>145</td>
</tr>
</tbody>
</table>

Table 2 shows the analysis of Formation Water from Caroline No. 1. Estimates of water solubility in carbon dioxide indicate that approximately 0.175% by weight of water must condense in passing from reservoir to wellhead conditions (i.e. 33 g/m² or 205 lb/mmcf, Noyes 1977). Since the Caroline well currently flows at around 2% water by weight, it is inferred that some free water is also produced. The formation water produced is essentially a solution of sodium bicarbonate with minor amounts of chloride and traces of sulphate and calcium.

Table 3. Gas Analysis, Caroline No. 1.

<table>
<thead>
<tr>
<th></th>
<th>Liquid Phase</th>
<th>Gas Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>98.9% by diff.</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>1.00%</td>
<td></td>
</tr>
<tr>
<td>C2H6</td>
<td>0.013%</td>
<td></td>
</tr>
<tr>
<td>C3H8</td>
<td>0.0049%</td>
<td></td>
</tr>
<tr>
<td>i C4 and n C4</td>
<td>10 ppm</td>
<td></td>
</tr>
<tr>
<td>C5’s</td>
<td>20 ppm</td>
<td></td>
</tr>
<tr>
<td>C6’s</td>
<td>25 ppm</td>
<td></td>
</tr>
<tr>
<td>C7’s and above</td>
<td>present</td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>32 ppm</td>
<td>0.08%</td>
</tr>
<tr>
<td>H2</td>
<td>2 ppm</td>
<td>5 ppm</td>
</tr>
<tr>
<td>O2</td>
<td>5 ppm</td>
<td>10 ppm</td>
</tr>
<tr>
<td>N2</td>
<td>0.10%</td>
<td>0.59%</td>
</tr>
<tr>
<td>CO</td>
<td>not detected</td>
<td>20 ppm</td>
</tr>
<tr>
<td>H2S</td>
<td>not detected</td>
<td>2 ppm</td>
</tr>
</tbody>
</table>

(ii) CARBON DIOXIDE

Gas analyses at the Caroline and Kalangadoo wells have shown raw gas from the well to contain around 99% carbon dioxide, with the bulk of the residue consisting of light hydrocarbons. Table 3 shows the details of gas composition from Caroline No. 1.

Reservoir temperature and pressure are well above the critical point for carbon dioxide, hence it exists as an indeterminate fluid within the reservoir. The phase change, resulting from temperature and pressure decrease passing up the well column, results in the production of liquid carbon dioxide at wellhead flowing pressure and temperature of 71 MPa (1030 PSI) and 28°C (82°F).

The high specific gravity of carbon dioxide (1.515 relative to air 1), compared to natural gases (generally less than 1), means that surface flowing and static pressures for a carbon dioxide well will be considerably less than for a natural gas well of equivalent depth and reservoir pressure. Unique problems also arise during open hole testing of carbon dioxide flows, resulting from the unusual thermodynamic properties of the gas. Natural gas of specific gravity 0.7, for example will have a latent heat of vaporisation of around 120 calories/gm. The latent heat of carbon dioxide is 6030 calories/gm, and dramatic cooling effects occur when the pressure drops, often sufficient for the formation of dry-ice and/or ice in flow lines. In order to overcome this problem a testing string requires a small diameter choke installed at the bottom of the well, so that the pressure drop takes place where the temperature is sufficiently high to prevent icing.

Theoretical pH determinations for formation water under reservoir conditions indicate a pH of around 5. Surprisingly, however, little evidence of corrosion is seen to date at the Caroline well after eight years of production.

PRODUCTION

Raw gas and sales gas production data for Caroline Field are summarised in Figure 8. Production commenced in November 1968 and current annual sales are around 12,000 tonnes (228 mmcf) corresponding to production of 16,500 tonnes (314 mmcf of raw gas). Cumulative production of raw gas to December 1975 is 95,000 tonnes. The maximum production rate achieved to date, given constraints of storage and tanker capacity, is around 79 tonnes (1.5 mmcf/day), raw gas. The seasonal nature of demand also limits total annual production.

Purification of the raw CO₂ is carried out by Carba Australia at their Caroline plant, and shipped to Melbourne at their Caroline plant, and shipped to Melbourne and Adelaide by pressurised road tanker. The purification process utilises well-head pressure and involves a relatively simple fractionation system to remove lower boiling point impurities, chiefly methane. Minor H₂S is also present (less than 2 ppm), and is removed by adsorption on zinc oxide.

During the well's production history a period of substantial free water flow resulted in depression of wellhead flowing pressure, but subsequent sealing off of the flow has allowed record production rates from late 1974 onwards.

---

Fig. 8. Production History, Caroline No. 1.

ADDITIONAL OTWAY BASIN CARBON DIOXIDE OCCURRENCES

In the Port Campbell Embayment of the Otway Basin, some 200 km (125 mi) to the east-south-east of Caroline No. 1, significant shows of carbon dioxide have been noted by
AUSTRALIAN PETROLEUM EXPLORATION ASSOCIATION LIMITED

An Association Not for Gain — Limited by Guarantee
(Incorporated under the Companies Act, 1936, of the State of New South Wales)

SECRETARY AND REGISTERED OFFICE
London Assurance House
20 Bridge Street Sydney
Postal Address GPO Box 834 Sydney 2001
Telegrams and Cables PETREXION Sydney

APEA 1977 CONFERENCE CHAIRMAN
M. A. Condon

TECHNICAL PAPERS COMMITTEE
B. R. Griffith, Chairman
M. C. Galloway
C. J. Lloyd
A. F. Strahan
J. Stunts
K. T. Tjin

The Journal is published under the direction of K. M. Horler, Executive Director APEA, by the Conference Technical Papers Committee of Australian Petroleum Exploration Association. Reproduction of material in whole or part requires customary acknowledgements and prior permission of the Association in writing.