Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE (Open Access)

Consequences of genetic selection for environmental impact traits on economically important traits in dairy cows

Purna Kandel A , Sylvie Vanderick A , Marie-Laure Vanrobays A , Hélène Soyeurt A and Nicolas Gengler A B
+ Author Affiliations
- Author Affiliations

A University of Liege, Gembloux Agro-Bio Tech, TERRA Teaching and Research Center, Passage des Déportés, 2, B-5030 Gembloux, Belgium.

B Corresponding author. Email: nicolas.gengler@ulg.ac.be

Animal Production Science - https://doi.org/10.1071/AN16592
Submitted: 2 September 2016  Accepted: 28 April 2017   Published online: 20 June 2017

Abstract

Methane (CH4) emission is an important environmental trait in dairy cows. Breeding aiming to mitigate CH4 emissions require the estimation of genetic correlations with other economically important traits and the prediction of their selection response. In this study, test-day CH4 emissions were predicted from milk mid-infrared spectra of Holstein cows. Predicted CH4 emissions (PME) and log-transformed CH4 intensity (LMI) computed as the natural logarithm of PME divided by milk yield (MY). Genetic correlations of PME and LMI with traits used currently were approximated from correlations between estimated breeding values of sires. Values were for PME with MY 0.06, fat yield (FY) 0.09, protein yield (PY) 0.13, fertility 0.17; body condition score (BCS) –0.02; udder health (UDH) 0.22; and longevity 0.22. As expected by its definition, values were negative for LMI with production traits (MY –0.61; FY –0.15 and PY –0.40) and positive with fertility (0.36); BCS (0.20); UDH (0.08) and longevity (0.06). The genetic correlations of 33 type traits with PME ranged from –0.12 to 0.25 and for LMI ranged from –0.22 to 0.18. Without selecting PME and LMI (status quo) the relative genetic change through correlated responses of other traits were in PME by 2% and in LMI by –15%, but only due to the correlated response to MY. Results showed for PME that direct selection of this environmental trait would reduce milk carbon foot print but would also affect negatively fertility. Therefore, more profound changes in current indexes will be required than simply adding environmental traits as these traits also affect the expected progress of other traits.

Additional keywords: dairy cows, genetic correlation, methane intensity, predicted methane emissions, selection response.


References

Bastin C, Berry DP, Soyeurt H, Gengler N (2012) Genetic correlations of days open with production traits and contents in milk of major fatty acids predicted by mid-infrared spectrometry. Journal of Dairy Science 95, 6113–6121.
Genetic correlations of days open with production traits and contents in milk of major fatty acids predicted by mid-infrared spectrometry.CrossRef | 1:CAS:528:DC%2BC38XhsVCnsb7K&md5=1f366ce337e103e8c469deb95d27a70fCAS |

Bell MJ, Wall E, Simm G, Russell G (2011) Effects of genetic line and feeding system on methane emissions from dairy systems. Animal Feed Science and Technology 166–167, 699–707.
Effects of genetic line and feeding system on methane emissions from dairy systems.CrossRef |

Calo LL, McDowell RE, Van Vleck LD, Miller PD (1973) Genetic aspects of beef production among Holstein–Friesians pedigree selected for milk production. Journal of Animal Science 37, 676–682.
Genetic aspects of beef production among Holstein–Friesians pedigree selected for milk production.CrossRef |

Chilliard Y, Martin C, Rouel J, Doreau M (2009) Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output. Journal of Dairy Science 92, 5199–5211.
Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output.CrossRef | 1:CAS:528:DC%2BD1MXhtF2qtrfE&md5=c383c72f671a923509af27037ee83b37CAS |

Croquet C, Mayeres P, Gillon A, Vanderick S, Gengler N (2006) Inbreeding depression for global and partial economic indexes, production, type, and functional traits. Journal of Dairy Science 89, 2257–2267.
Inbreeding depression for global and partial economic indexes, production, type, and functional traits.CrossRef | 1:CAS:528:DC%2BD28Xlt1eqsb4%3D&md5=375046a0036c9ba895e1045169145ad6CAS |

de Haas Y, Windig YJJ, Calus MPL, Dijkstra J, de Haan M, Bannink A, Veerkamp RF (2011) Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. Journal of Dairy Science 94, 6122–6134.
Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.CrossRef | 1:CAS:528:DC%2BC3MXhsFClsbvL&md5=416eec2c2af88d1243ae3daaceb32ca2CAS |

Dehareng F, Delfosse C, Froidmont E, Soyeurt H, Martin C, Gengler N, Vanlierde A, Dardenne P (2012) Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal 6, 1694–1701.
Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows.CrossRef | 1:CAS:528:DC%2BC38Xht1Gis7zP&md5=ed22c4f580dd9b9fe19071c9ad8b0a9aCAS |

Dijkstra J, van Zijderveld SM, Apajalahti JA, Bannink A, Gerrits WJJ, Newbold JR, Perdok HB, Berends H (2011) Relationships between methane production and milk fatty acid profiles in dairy cattle. Animal Feed Science and Technology 166–167, 590–595.
Relationships between methane production and milk fatty acid profiles in dairy cattle.CrossRef |

Egger-Danner C, Cole JB, Pryce JE, Gengler N, Heringstad B, Bradley A, Stock KF (2015) Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 9, 191–207.
Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits.CrossRef | 1:CAS:528:DC%2BC2MXhtFyktLs%3D&md5=ba2655cf3c430c7356c124deaf2d20d4CAS |

FAO (2010) ‘Greenhouse gas emissions from the dairy sector: a life cycle assessment.’ Prepared by P Gerber, T Vellinga, C Opio, B Henderson, H Steinfeld. (FAO: Rome, Italy)

Gengler N, Soyeurt H, Dehareng F, Bastin C, Colinet FG, Hammami H, Vanrobays ML, Lainé A, Vanderick S, Grelet C, Vanlierde A, Froidmont E, Dardenne P (2016) Capitalizing on fine milk composition for breeding and management of dairy cows. Journal of Dairy Science 99, 4071–4079.
Capitalizing on fine milk composition for breeding and management of dairy cows.CrossRef | 1:CAS:528:DC%2BC28XktVSlug%3D%3D&md5=2f93e72ba1804bfe2d36966707497665CAS |

Goopy JP, Donaldson A, Hegarty R, Vercoe PE, Haynes F, Barnett M, Oddy VH (2014) Low-methane yield sheep have smaller rumens and shorter rumen retention time. British Journal of Nutrition 111, 578–585.
Low-methane yield sheep have smaller rumens and shorter rumen retention time.CrossRef | 1:CAS:528:DC%2BC2cXisVCgtL8%3D&md5=1628caf257355975b0c363fd4bd93f7dCAS |

Grandl F, Amelchanka SL, Furger M, Clauss M, Zeitz JO, Kreuzer M, Schwarm A (2016) Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age. Journal of Dairy Science 99, 3472–3485.
Biological implications of longevity in dairy cows: 2. Changes in methane emissions and efficiency with age.CrossRef | 1:CAS:528:DC%2BC28XjsVamsrk%3D&md5=9ae7aba62102fcc77e5a4697361de718CAS |

Grelet C, Fernández Pierna JA, Dardenne P, Baeten V, Dehareng F (2015) Standardization of milk mid-infrared spectra from a European dairy network. Journal of Dairy Science 98, 2150–2160.
Standardization of milk mid-infrared spectra from a European dairy network.CrossRef | 1:CAS:528:DC%2BC2MXis1eitr0%3D&md5=bed5cf000990c702aa4faedfa2d7da97CAS |

Hare E, Norman HD, Wright JR (2006) Survival rates and productive herd life of dairy cattle in the United States. Journal of Dairy Science 89, 3713–3720.
Survival rates and productive herd life of dairy cattle in the United States.CrossRef | 1:CAS:528:DC%2BD28Xos1Kht7k%3D&md5=1959ffe96c09c567e4d62f25356e3c4eCAS |

Hayes BJ, Lewin HA, Goddard ME (2013) The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics 29, 206–214.
The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation.CrossRef | 1:CAS:528:DC%2BC38XhvVKqurbM&md5=6e692580551c51331286b4cf55f236d3CAS |

Hayes BJ, Donoghue KA, Reich CM, Mason BA, Bird-Gardiner T, Herd RM, Arthur PF (2016) Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle. Journal of Animal Science 94, 902–908.
Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.CrossRef | 1:CAS:528:DC%2BC28XhsVCks7bN&md5=e47d8131c8def0879c2b705d75a43446CAS |

ICAR (2016) ‘International agreement of recording practices: ICAR recording guidelines.’ (ICAR: Rome) Available at http://www.icar.org/wp-content/uploads/2016/03/Guidelines-Edition-2016.pdf [Verified 12 February 2017]

Johnson KA, Johnson DE (1995) Methane emissions from cattle. Journal of Animal Science 73, 2483–2492.
Methane emissions from cattle.CrossRef | 1:CAS:528:DyaK2MXnsVCntb8%3D&md5=66b17b1df98cdfa8f6b620f3937fcbffCAS |

Kandel PB, Gengler N, Soyeurt H (2015) Assessing variability of literature based methane indicators traits in a large dairy cow population. Biotechnologie, Agronomie, Société et Environnement 19, 11–19.

Kandel PB, Vanrobays ML, Vanlierde A, Dehareng F, Froidmont E, Gengler N, Soyeurt H (2017) Genetic parameters for predicted methane emission traits and their relationship with milk production traits in Holstein cows. Journal of Dairy Science
Genetic parameters for predicted methane emission traits and their relationship with milk production traits in Holstein cows.CrossRef |

Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science 97, 3231–3261.
Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions.CrossRef | 1:CAS:528:DC%2BC2cXmtlCnt74%3D&md5=5a9085b73aa64f0be667c79bfe684bd5CAS |

Lassen J, Løvendahl P (2016) Heritability estimates for enteric methane production in dairy cattle using non-invasive methods. Journal of Dairy Science 99, 1959–1967.
Heritability estimates for enteric methane production in dairy cattle using non-invasive methods.CrossRef | 1:CAS:528:DC%2BC28XhsVKhsbo%3D&md5=89517241141358a911f484aac664f756CAS |

Soyeurt H, Dehareng F, Gengler N, McParland S, Wall E, Berry DP, Coffey M, Dardenne P (2011) Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science 94, 1657–1667.
Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries.CrossRef | 1:CAS:528:DC%2BC3MXnvFChtro%3D&md5=d51f9d6b983929ba4608d504ba453b18CAS |

van Knegsel ATM, Van denBrand H, Dijkstra J, Van Straalen WM, Heetkamp MJ, Tamminga S, Kemp B (2007) Dietary energy source in dairy cows in early lactation: energy partitioning and milk composition. Journal of Dairy Science 90, 1467–1476.
Dietary energy source in dairy cows in early lactation: energy partitioning and milk composition.CrossRef | 1:CAS:528:DC%2BD2sXitlWnu7g%3D&md5=a89c39c1310d925b7985cfb15429d286CAS |

Vanderick S, Bastin C, Gengler N (2015) Description of the genetic evaluation systems used in the Walloon Region of Belgium. Available at http://www.elinfo.be/docs/GESen1508.pdf [Verified 12 February 2017]

Vanlierde A, Vanrobays M-L, Dehareng F, Froidmont E, Soyeurt H, McParland S, Lewis E, Deighton MH, Grandl F, Kreuzer M, Gredler B, Dardenne P, Gengler N (2015) Hot Topic: Innovative lactation stage dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science 98, 5740–5747.
Hot Topic: Innovative lactation stage dependent prediction of methane emissions from milk mid-infrared spectra.CrossRef | 1:CAS:528:DC%2BC2MXpt1Sksrs%3D&md5=3922fe283ad0cfa7f12c262aa543eddeCAS |

Vanlierde A, Vanrobays M-L, Gengler N, Dardenne P, Froidmont E, Soyeurt H, McParland S, Lewis E, Deighton MH, Mathot M, Dehareng F (2016) Milk mid-infrared spectra enable prediction of lactation-stage dependent methane emissions of dairy cattle within routine population-scale milk recording schemes. Animal Production Science 56, 258–264.
Milk mid-infrared spectra enable prediction of lactation-stage dependent methane emissions of dairy cattle within routine population-scale milk recording schemes.CrossRef | 1:CAS:528:DC%2BC28Xis1ams7s%3D&md5=8d2e869dff97a2a1eabd00391448d7fbCAS |

Vanrobays M-L, Bastin C, Vandenplas J, Hammami H, Soyeurt H, Vanlierde A, Dehareng F, Froidmont E, Gengler N (2016) Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra Journal of Dairy Science 99, 7247–7260.
Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectraCrossRef | 1:CAS:528:DC%2BC28XhtVymsr3P&md5=da00ad82988284f0e5b8aea67dc16918CAS |


Full Text PDF (240 KB) Export Citation

View Altmetrics