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Abstract. Pasture based on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) is the foundation
for production and profit in the Australasian pastoral sectors. The improvement of these species offers direct opportunities
to enhance sector performance, provided there is good alignment with industry priorities as quantified by means such as
the forage value index. However, the rate of forage genetic improvement must increase to sustain industry competitiveness.
New forage technologies and breeding strategies that can complement and enhance traditional approaches are required
to achieve this. We highlight current and future research in plant breeding, including genomic and gene technology
approaches to improve rate of genetic gain. Genomic diversity is the basis of breeding and improvement. Recent advances in
the range and focus of introgression from wild Trifolium species have created additional specific options to improve
production and resource-use-efficiency traits. Symbiont genetic resources, especially advances in grass fungal endophytes,
make a critical contribution to forage, supporting pastoral productivity, with benefits to both pastures and animals in
some dairy regions. Genomic selection, now widely used in animal breeding, offers an opportunity to lift the rate of genetic
gain in forages as well. Accuracy and relevance of trait data are paramount, it is essential that genomic breeding approaches
be linked with robust field evaluation strategies including advanced phenotyping technologies. This requires excellent
data management and integration with decision-support systems to deliver improved effectiveness from forage breeding.
Novel traits being developed through genetic modification include increased energy content and potential increased biomass
inryegrass, and expression of condensed tannins in forage legumes. These examples from the wider set of research emphasise
forage adaptation, yield and energy content, while covering the spectrum from exotic germplasm and symbionts through
to advanced breeding strategies and gene technologies. To ensure that these opportunities are realised on farm, continuity
of industry-relevant delivery of forage-improvement research is essential, as is sustained research input from the

supporting pasture and plant sciences.
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Introduction

Industry competitiveness and farm productivity are strongly
influenced by genetics. The rate of genetic improvement is a
key performance indicator for breeding and underpinning
sciences. Historically, rates of genetic gain in forage species
have been low relative to other agricultural plant and animal
species (Woodfield 1999; Brummer and Casler 2014).
Challenges in achieving and sustaining specific trait
improvements in forage species have been noted (Parsons
et al. 2011). Furthermore, grass genetic gain has been
evaluated in small-plot monocultures, despite their ultimate
application in mixed species swards, and therefore published
rates may not accurately reflect performance gain realised in
pastures. Research to assess impact of genetic improvement of
forage species at the farmlet scale in New Zealand have had
mixed results (Crush et al. 2006). Given the importance of
forage in farm systems, substantial research effort is focussed
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on developing better breeding strategies to lift the rate of
genetic gain in pasture species, and to deliver step changes in
key traits. These are long-term research projects, guided by
emerging industry-led forage trait prioritisation and cultivar
benchmarking (Chapman et al. 2012).

Improved productivity from forage offers ongoing
opportunities to pasture-based dairying, providing options to
lift production efficiency as measured through economic and
environmental metrics. Several factors contribute to the urgency
to improve the genetic potential of forage. The established rate
of gain in the genetic potential of dairy animals is in itself a
driver for improved performance from forage, so as to meet
these animals’ genetic potential. There is also the need to cater
to intensively managed systems with higher stocking rates, and
for greater cost efficiency through increased plant nutrient-use
efficiency and improved seasonal growth. While supplementary
feeds offer flexibility, they carry economic, biosecurity and
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market-availability risks, and cannot provide the major feed
source in cost-competitive pasture-fed dairy systems.

Perennial ryegrass (Lolium perenne L.) and white clover
(Trifolium repens L.) are the cornerstone species supporting
pasture-based dairy systems in New Zealand and Australia.
While perennial ryegrass provides most of the feed base, white
clover is a valuable pasture component that enhances animal
intake and performance, contributes to seasonal feed supply, fixes
atmospheric nitrogen and improves soil health (Jahufer et al.
2012). In addressing the need for improved performance from
pasture species, the forage value index initiative (Chapman et al.
2012) is a critical factor in defining and prioritising breeding
targets, and in benchmarking cultivar performance in economic
terms using trials that reflect on-farm conditions. While there are
notable recent breakthroughs in improvement of allied forage
species such asred clover (Ford and Barrett 201 1), our objective is
to identify research opportunities in these two species that will
improve their value to the Australasian dairy industry. To thatend,
we highlight progress and opportunities in the following four
distinct research areas: harnessing forage genetic resources
through wide hybridisation and pre-breeding, advances in
plant fungal-endophyte research, genomic selection in forage
breeding, and progress towards step changes in forage traits
through genetic modification.

Utilising genetic resources

Plant genetic diversity is a fundamental driver of genetic
improvement. Both ryegrass and white clover have widespread
genetic resources in situ, radiating from their Old World centres of
diversity (Abberton and Thomas 2011). There are also extensive
curated ex situ seed collections, including the Margot Forde
Forage Germplasm Centre in New Zealand. Over 15000
accessions have been added to the Centre over the past 3 years
from ongoing collection trips to centres of diversity, and from
research population development. White clover, a stoloniferous
perennial legume, and related Trifolium species provide an
excellent example of how knowledge and utilisation of wider
genetic resources can contribute to agriculture in Australasia.
Although our pastures are dominated by grass species, the
contribution of white clover to feed quality and nitrogen
fixation, as well as to animal intake and productivity, means
that it continues to offer value as a key component of grass-based
grazing systems. White clover is genetically variable, but this
variation is insufficient to derive high-yielding cultivars adapted
to intermittent moisture stress or soil phosphate deficiencies. For
example, there is variation for drought tolerance within white
clover, possibly influenced by specific metabolites (Ballizany
et al. 2012a, 2012b), but this variation is limited. Rather than
selecting within only the white clover genome for these traits, an
alternative approach is to introduce new diversity from close but
predominantly undomesticated wild relatives, using the proven
technique of interspecific hybridisation.

Relationships among species contributing to this wider gene
pool were identified as part of a molecular-based phylogeny ofthe
genus Trifolium (Ellison et al. 2006). In addition to direct crosses
with white clover, other hybrid combinations between these
related species provide a valuable source of new forage
germplasm. They can also be used as genetic bridges through
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which new traits can be introduced into white clover (Williams
et al. 2011). Re-introducing genomes that have long been
separated, and subsequent genetic recombination in these
interspecific hybrids, are both options to increase the potential
for useful variation. Transgressive segregation is a common
feature of wide crosses, indicating relevant agronomic trait
values outside the parental range are possible.

Species closely related to white clover possess a range of
desirable characteristics, including drought tolerance, salt
tolerance, tolerance to viruses and nematodes, prolific
flowering, increased seed production, deep root systems and
rhizomes (Williams et al. 2012; Nichols et al. 2014c).
Through introgression of these traits, some of the limitations
to white clover agronomic performance may be overcome. For
example, growth and persistence of white clover is severely
constrained by soil moisture deficit. Backcross hybrids
between white clover and T. wniflorum are markedly less
affected by drought stress than are white clover cultivars
(Nichols et al. 2014b). Under controlled field conditions, total
shoot dry weight under water stress decreased ~20% less in first-
generation backcross hybrids than in white clover. Traits likely to
contribute to this drought tolerance have been identified,
including stolon morphological characteristics such as leaf size
and internode length, senescence, root biomass and diameter, and
production of protective biochemical compounds. Similar
responses have been observed in hybrids between white clover
and the progenitor species 7. occidentale. In backcrossed
hybrids introgressing the 7. occidentale parent into a white
clover background, shoot dry weight decreased 15% less
under moisture stress than in white clover, and root biomass
increased by 70% (Hussain and Williams 2013).

A similar opportunity related to nutrient-use efficiency is
also being investigated. Under glasshouse conditions, some
T. repens X T. uniflorum first-generation backcross hybrids had
greater growth than did white clover under low external
phosphate supplies in soil and sand culture, including low to
intermediate soil Olsen phosphorus (P) levels (Nichols et al.
2014a, 2014d). For example, one hybrid family had shoot dry
weights that were, on average, 17% higher than for white
clover at Olsen soil P levels of 9-20. This may be due in part
to differences in internal phosphate-use efficiency. Root
characteristics associated with increased P acquisition, such as
a highly flexible root : shoot ratio and increased root branching,
have also been observed (Nichols et al. 2014a). According to
current knowledge, hybrids created with close relatives of white
clover nodulate freely with Rhizobium strains effective on
white clover. Nichols et al. (2014a) found evidence that
nitrogen fixation did not differ between 7. repens X
T. uniflorum hybrids and white clover in the field. Even so,
ongoing monitoring of nitrogen-fixation capacity would be
prudent with this novel germplasm. Further screening for
rhizobia strains compatible with specific hybrid combinations
for agronomic potential may also be valuable.

Legume germplasm with improved drought resistance and
tolerance of low soil P may have greater resilience during drought
events, and lower P-fertiliser input requirements. This could
have environmental and economic benefits associated with
improved productivity per unit of irrigation and fertiliser.
Improvements in white clover productivity and persistence
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under moisture- and P-limiting conditions would also maintain
the legume component of the sward over the longer term, and
could increase clover content where it is currently limited by
the environment or input requirements. This would have
positive impacts on the direct and indirect contributions of
white clover to pasture productivity and animal performance.

Interspecific hybrid combinations are expected to deliver
value to the pastoral sector through the development of white
clover cultivars with improved performance for one or more key
traits. Further elucidation of the genetic and physiological basis
of these traits may be aided by the use of genomics tools such
as linkage maps (Griffiths et al. 2013) and reference genome
information to guide the introgression effort. This approach will
aid selection against undesirable traits present in some of these
wild species.

Building on progress in legume breeding via wide
hybridisation, there are parallel opportunities to access
variation for traits related to adaptation and yield in pasture
grass species, where inter-specific hybrids can be made. The
Festuca—Lolium complex and their hybrids (King ez al. 2013)
are the most widely studied system. Amphiploids combining
all traits, or targeted trait introgression via backcrossing offer
flexibility in the ways these grasses are combined and
manipulated to improve traits in breeding populations
(Thomas et al. 2003). With the potential to expand adaptation,
improve resource-use efficiency, enhance legume compatibility,
and improve adaptation to climate change, these hybrids warrant
increased research activity in Australasia, given the dominant role
of grass in the dairy pasture feed base.

In addition to the substantial presence in temperate regions,
dairy production from pasture in subtropical climates is a
component of the Australasian industry. Dairying in these
northern regions of New Zealand and Australia, where pasture
can be dominated by C,4 grass species such as kikuyu (Pennisetum
clandestinum) would benefit from genetic improvement of
tropical and subtropical grass species (Crush and Rowarth
2007; Garcia et al. 2014). A farmer-led action group has
investigated means to improve production on kikuyu-based
pastures in the Northland region of New Zealand since 1999,
demonstrating the importance of the species in such regions
and local interest in regionally tailored forage options.
Improvement of tropical forage can have a substantial impact,
as demonstrated by the economic analysis of development of
Brachiaria cultivars with drought and pest tolerance via inter-
specific hybridisation and selection (Rivas and Holmann 2005;
Miles et al. 2006). This emphasises the high value and long-term
nature of research to deliver traits from inter-specific hybrids,
and, additionally, suggests that there may be value in pre-breeding
research to support improvement of subtropical forage species
for Australasia.

Grass fungal endophyte

One of the key microbial interactions in pastures of Australia,
New Zealand and North America involves a fungal symbiont of
cool-season grasses, the Calvicipitalean fungi Epichloé. The
Epichloé forms endo-symbioses with grasses in the subfamily
Pooideae, including important forage species such as perennial
ryegrass, tall fescue (Festuca arundinacea) and meadow fescue
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(F. pratensis). It plays a key role in pasture, primarily through the
production of secondary metabolites, including alkaloids that
protect the host plant from biotic and abiotic stress (Johnson et al.
2013; Schardl et al. 2013).

The wild-type endophyte Epichloé festucae var. lolii
(= Neotyphodium Iolii = Acremonium loliae) found in
ryegrass, also known as standard endophyte (SE), produce
lolitrem B, ergovaline and peramine. Peramine has effects on
the pasture pest Argentine stem weevil (Listronotus bonariensis),
with no concomitant animal toxicity (Popay et al. 1990; Rowan
et al. 1990; Pownall et al. 1995). Ergovaline has effects on
African black beetle (Heteronychus arator) and increases
vasoconstriction in ruminants (Klotz ef al. 2007). Lolitrem B
reduces growth of Argentine stem weevil larvae (Prestidge and
Gallagher 1988) and is the causal agent of ryegrass staggers in
ruminants (Fletcher and Harvey 1981), while epoxy-janthitrems,
produced by certain endophyte strains, have broad anti-insect
effects, with the possibility of a weak ryegrass staggers effect
(Fletcher 2005; Fletcher and Sutherland 2009; Popay and Thom
2009). Studies have shown that both lolitrem B and epoxy-
janthitrems can be detected in milk from cows grazing
endophyte-infected grass. Studies of these compounds in milk
indicate that they do not accumulate to biologically meaningful
levels, and are unlikely to pose a threat to human health (Finch
et al. 2007, 2013).

In both Australasia and the Americas, the issue of endophyte
toxicities has been addressed by identifying non-toxic and
low-toxicity endophyte strains, and co-selecting them within
improved, locally adapted temperate grass populations. These
strains have been isolated from grasses derived primarily from
Europe, where a diversity of chemo-types occur (Tapper and
Latch 1999). Strains have been isolated from this primary
germplasm, cultured in the laboratory, then inoculated into
elite pasture germplasm (Simpson et al. 2012; Johnson et al.
2013). The development of selected endophytes for use in grass-
based forage systems have made substantive contributions to the
pastoral sector; the non-toxic strain AR1 and subsequent strains
constitute the single biggest development in the improvement of
perennial ryegrass pastures in the past 50 years (Williams et al.
2007).

The interaction of the fungus and the host grass determines
functional characteristics of the symbiotum, including drought-
stress tolerance, plant growth and seed yield. These effects are
affected by the specific environment of the symbiotum (Hesse
etal.2003,2004). The biological system is complex, representing
agenotype (fungus) X genotype (grass) X environment interaction
with trophic effects via biotic interactions with ruminants,
invertebrates and microbes (Miiller and Krauss 2005). Sown
pastures will reflect this biological complexity due to the
diversity of host genotypes, while persistence of specific
symbiota is mediated through both biotic and abiotic
conditions. Thus, there is potential for ongoing breeding and
selection for symbiota better adapted to agricultural systems
(Easton 2007).

Studies of the effects of endophyte in dairying systems have
been conducted in south-eastern Australia. Ryegrass staggers
were observed on 33-43% of dairy farms surveyed in south-
western Victoria (Reed et al. 2004). In South Australia, 4—12%
reductions in milk volume were observed when animals were
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rotationally grazed on SE-infected irrigated perennial ryegrass
pastures, as compared with production from a low-endophyte
pasture (Valentine ef al. 1993). In coastal New South Wales,
a case study examined the effects of ergovaline ingestion on
the health and productivity of lactating dairy cows. This showed
a loss of body condition, a decrease in milk production and
an increase in somatic cell counts when consuming ryegrass
silage with high ergovaline concentrations, compared with
ryegrass pasture with total or partially mixed rations (Lean
2001). Work by Moate et al. (2012) in south-eastern Victoria
compared milk production from systems using perennial
ryegrass infected with SE, AR1 and AR37 endophyte. In this
trial, both AR 1- and AR37-infected pasture had no effect on milk
production compared with SE-infected pasture, and generally
did not cause ryegrass staggers, while SE-infected pastures
caused staggers in one of the years of the trial (Moate
et al. 2012). However, this trial included a high level of
supplementary feeding, which substantially diluted endophyte
toxins in times of peak alkaloid concentration. Consequently, the
results cannot be compared directly to studies involving pasture-
only diets. These studies suggest that effects can vary
among years and seasons and with levels of supplementary
feed. However, research findings, in general, support the
consistent message that it benefits the pasture to have an
endophyte, and that selected, non-toxic strains have benefits
for the grazing animal.

For Epichloé endophytes to be deployed in farming systems,
strains with desirable chemical profiles must first be identified
from natural grass populations and the strain must then be
inoculated into adapted grass germplasm for evaluation. This,
in conjunction with an established method for infecting new
populations, has allowed the production of grass cultivars with
no or low mammalian toxicity while retaining invertebrate
antibiosis properties. Current research into the genetic
diversity of endophyte strains and their characteristics in novel
associations supports this effort to identify useful endophytes
for deployment in agriculture (Ekanayake et al. 2012, 2013;
Tian et al. 2013a, 2013b). Possibilities for the future include
utilising genetic technologies that knock out metabolite genes
and eliminate toxins and/or accumulate desirable early pathway
metabolites. Alternatively, new strains can be developed by
protoplast fusion of selected strains, with a view to combining,
in one strain, metabolites that do not otherwise occur together or,
for example, to producing lolines in perennial ryegrass Epichloé
strains. Currently, efforts are being made to synthetically produce
symbioses between Epichloé and cereal grasses such as rye
(Secale cereale) (Simpson et al. 2014). These will have
application in forage systems, in addition to possibilities for
conferring insect-pest protection and enhanced adaptation to
crops grown for human consumption.

In aggregate, research findings demonstrate the importance
of the Epichloé—grass symbiosis in pastoral agriculture and,
specifically, in Australasian dairy production systems. The
impact of these symbioses on dairy production is generally
positive, but varies depending on the environment, pasture
cultivar, endophyte strain and the management system of the
production unit. The strategy of discovery and deployment of
novel strains that produce targeted metabolites offers a solution
to the issue of pasture-grass protection from predation by insect
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pests. From a dairy production point of view, there are benefits
in production and profitability to be harnessed by deploying
these selected endophyte strains, and evidence suggests human
consumption of the products of animals ingesting Epichloé
metabolites presents no risk to either market acceptance or
human health.

Genomic selection

Conventional approaches to forage plant breeding using
phenotypic or genotypic selection are limited in their capacity
to improve a range of low- and moderate-heritability quantitative
traits, including nutritive value and yield, primarily due to cost
and logistics constraints. Molecular markers are effective in
identifying genome regions influencing trait variation in
complex populations (Maureira-Butler et al. 2007; Barrett
et al. 2008; Faville et al. 2012). However, factors including
low throughput of some marker technologies, the need to re-
estimate marker—trait associations in each target breeding
population, lack of monogenic traits of economic relevance,
the limited proportion of genetic variance captured by single
or few markers for complex traits, and small market size
have limited the use of markers by forage breeders in
Australasia. Genomic selection (GS) may offer a viable
alternative. In general, GS enables a plant breeder to use a
comprehensive DNA fingerprint to assess the genetic potential
of an otherwise untested individual, and thereby make a
genomic prediction for use in selection. This creates options to
shorten the breeding cycle and/or improve accuracy of
selection, the potential to improve low-heritability traits, and
increase the rate of genetic gain in forage species (Heffner et al.
2010; Resende et al. 2014). It may also address some previously
intractable challenges, such as grass—legume co-selection,
which are currently heavily constrained by resource and
logistic limitations.

Emerging theoretical (Heffner et al. 2010; Hayes ef al. 2013;
Resende et al. 2014) and empirical (Poland et al. 2012; Pryce
et al. 2014) evidence indicates that GS can provide a substantial
increase in rate of genetic gain versus conventional, phenotypic
selection, and can be integrated with existing plant breeding
systems. The GS theoretical framework developed over a
decade ago (Meuwissen et al. 2001) is now enabled by
efficiency gains in DNA marker (Davey et al. 2011; Elshire
et al. 2011; Poland and Rife 2012) and, more recently, plant
phenotypic (White and Conley 2013) data generation,
management and analysis; and offers proven value in economic
plant species (Massman et al. 2013; Spindel ez al. 2015).

The emergence of high-capacity-marker platforms with
improved flexibility and lower costs, such as genotyping by
sequencing (GBS; Elshire et al. 2011), further improves the
efficiency of genotyping. This allows breeders to develop GS
models that deliver genomic estimated breeding values for
selection candidates, which better access and harness the many
genes of small effect throughout the genome. This approach is
particularly attractive for complex forage traits such as yield,
nutritive value and persistence that are all influenced by large
numbers of loci, and are subject to environment and symbiont
interactions. Genomic selection may be augmented by candidate
gene-marker haplotypes, where the marker effect is verified for
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stability across environmental and genetic backgrounds, and of
proven value to the predictive model.

In evaluating an advanced breeding strategy such as GS, it
is important to understand the context and ensure the
fundamentals of forage plant improvement are attended to.
These include breeding program logistics, accurate phenotypes,
understanding the species and patterns of diversity, genotype X
environment interactions, and trait prioritisation. Currently,
some breeding programs are resource limited to the point that
theoretically optimal conventional breeding strategies that are
expected to deliver enhanced genetic gain, such as recurrent
selection among and within families (Casler and Brummer
2008), are rarely implemented in a comprehensive way.
Fortunately, GS addresses this limitation, for example, by
providing a cost-efficient means for accessing within-family
variation, as well as providing a method for implementing
selection for long-term traits such as plant persistence within
an annual selection cycle (Resende et al. 2014). The definition
of trait targets and assigning economic weights for use in a
standardised evaluation system is a recent initiative that will
help define targets for advance breeding methodologies, in
addition to providing unbiased and in-depth information to
farmers regarding current cultivar performance (Chapman
etal 2012).

The cost of linking plant phenotypes to genotypes has been
markedly affected by reduction in the cost of high-density DNA-
marker genotyping. However, plant phenotyping technology
has advanced comparatively slowly over the past three
decades (White et al. 2012). This is the major bottleneck for
plant-improvement strategies, and is, consequently, a major
research focus. In recent years, there has been a burgeoning
array of in-field sensor options and deployment platforms (e.g.
hand-held or vehicle-mounted) proposed, tested or actively
deployed for major crop species (White et al. 2012; Andrade-
Sanchez et al. 2014; Araus and Cairns 2014).

In forages, a significant proportion of phenotypic data is
acquired routinely via semiquantitative  visual-scoring
approaches (Walter et al. 2012). Traits that require tissue
harvest and laboratory measurement, such as nutritive-quality
measures, are not routinely screened due to cost or logistic issues.
Development of in-field phenotyping tools for forages, therefore,
has the potential to enhance accuracy for traits routinely measured
by semiquantitative means, as well as supporting extension of
phenotyping to traits previously not accessible. This process will
involve evaluation of proximal sensing and imaging options as
well as deployment platforms that are appropriate for the
estimation of targeted traits and in relevant trial formats (e.g.
individual plant or sown plots). Comprehensive sensor
calibration, referenced to appropriate laboratory assays, will be
required and calibration models will need to be built and
validated, accounting for different environments and seasons
to ensure applicability across Australasian conditions.
Recently, this has been demonstrated in forages in the context
of pasture agronomy (Pullanagari et al. 2013), indicating the
potential for utilisation in plant breeding.

Use of an indirect selection method such as GS, which may be
trained using indirect phenotypic trait measures such a data
acquired via sensors, offers some reason for caution in
development of a genomic prediction capability. This may be
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compounded in the case of traits such as mixed sward yield, which
rely on measurements in imperfectly correlated environments
such as single plants or rows. These biological complexities
are a primary challenge in harnessing this technology for
driving improvement of key economic traits. Substantial work
to generate relevant, accurate genomic prediction equations for
key traits is essential to avoid pitfalls and realise the potential
this technology offers.

In New Zealand, genomic selection for forage yield
and nutritive-value traits is being empirically tested at a
proof-of-concept scale, using a training population of
replicated perennial ryegrass families evaluated in multiple
environments. Application of GS at the larger, industry-wide
scale, encompassing multiple breeding programs, presents
research challenges (Crossa ef al. 2014) including genomics
applications development; standardising, aggregating and
prioritising phenotypic records; assessing and harnessing
genotype X environment interactions (Lado et al. 2013);
in-field phenotyping precision and efficiency; data optimisation
and integration, and optimisation for prediction accuracy
(Riedelsheimer and Melchinger 2013). In meeting these
challenges, statistical, bioinformatic, genomic and field-
evaluation processes must be improved to ensure GS in
forages delivers value at an industry scale, presenting a
planning and logistics challenge to the research community.
Scale up for GS in forage breeding will be guided by a
quantitative genetic model that is linked with economic and
biophysical models, to ensure that traits targeted are adaptive
within on-farm environmental and management constraints.

Evidence of efficacy for any novel breeding strategy must
include assessment of rate of genetic gain against historic
baselines and other breeding strategies (Resende et al. 2013).
This includes empirical and modelled evidence to assess
comparative efficiencies per unit resource (Massman et al.
2013; Resende et al. 2013) across the range of traits under
selection.

Gene technology

Genetically modified (GM) crops have become well established
globally, with 18 million farmers in 27 countries planting 175
million hectares of GM crops in 2013 (James 2013). This
represents an area 6.6 times the total land area of New Zealand
or almost a quarter of the total land area of Australia. However,
commercial application of GM technology is limited to a few
widely grown crops such as soybean, cotton, maize and canola.
These GM crops are often used for animal feed. Meta-analysis
of over 100 billion animals, including several long-term (>90-
day) and multi-generational studies pre- and post-introduction
of GM feeds, has revealed no adverse effects on ruminant
productivity or health attributable to GM (Van Eenennaam and
Young 2014). However, the adoption of GM in forage grasses
and legumes lags behind that in crops, and is limited to
herbicide-resistant lucerne (Medicago sativa) (James 2013)
and, more recently, a low-lignin trait in lucerne. However,
there is substantial interest in output traits for animal
production (Van Eenennaam and Young 2014).

For genetic modification of forage grasses and legumes to
deliver substantive improvements in animal production, it is
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essential to develop forages with marked improvements in
genetically tractable output traits such as yield and forage
quality, so as to justify the investment associated with GM
development and deregulation. Forage quality is a major
constraint on productivity. The main components of forage
nutritive value include protein, water-soluble carbohydrates
(WSC) as the major component of non-fibrous carbohydrate,
neutral detergent fibre digestibility, and lipid contents. Several
research groups internationally have attempted to increase the
concentration of fructans, the main WSC fraction in perennial
ryegrass. Conventionally bred high-sugar grasses produce
25-50% more total WSC than do conventional cultivars;
however the full expression of this trait is regulated by a gene-
by-environment interaction, requiring prolonged exposure to
short days and temperature under 10°C (Rasmussen et al.
2013, 2014). Perennial ryegrass with genetic modifications to
the fructan biosynthetic pathway has demonstrated increases in
WSC similar to the concentrations seen in conventionally bred
high-sugar grasses. The main benefit from genetic modification in
this case is that the gene-by-environment interaction is overcome
(Rasmussen et al. 2013).

Another approach has been to modify cell-wall biosynthesis,
as recently reviewed by Zhao and Dixon (2014). The main goal
of international research efforts has been to improve the access
of enzymes to the major cell-wall polysaccharides cellulose
and hemicellulose. This has been achieved through the genetic
modification of the lignin biosynthetic pathway by either
reducing lignin concentrations or altering lignin composition.
These modifications have improved forage digestibility in vitro
(Getachew et al. 2011). The most successful approach has been
to alter lignin content rather than lignin composition in alfalfa
(Zhao and Dixon 2014).

Two major research projects at AgResearch have made
significant progress on two important forage-quality targets
and have the potential for step-changes in animal performance.
These target major changes in forage quality by increasing energy
via production of foliar lipids in grass, and slowing the rate
of protein breakdown via production of condensed tannins
in forage legumes. The genes required to meet both these
challenges are either not known to exist, or do not exist in the
target species.

High-energy forages

Forages with high energy can be developed by increasing
the lipid concentration in vegetative tissue. Under normal
circumstances, plants store neutral lipids only in seeds and
pollen, as a source of essential energy for subsequent
germination. The majority of leaf lipid is found in membranes,
where it makes up ~3.5% of dry matter (DM). Lipids have
twice the caloric value of the other main sources of energy in
forage leaves, namely, WSC and protein. The goal is to double
the level of leaf lipids to ~7—8% of DM. At this level, it is
expected to obtain a 10% increase in metabolisable energy and
the concentration of lipids would not be high enough to cause
milk fat depression in grazing dairy cows (Flowers et al. 2008).
Supplementary feeding trials in sheep have demonstrated that
increasing the level of dietary fat to 8% DM led to a 30%
increase in feed conversion efficiency (Cosgrove et al. 2004).
There is minimal genetic variation in leaf lipid concentrations
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and, therefore, the opportunity to rapidly and substantially
change leaf lipid concentrations through conventional plant
breeding is limited (Palladino et al. 2009; Glasser et al. 2013;
Hegarty et al. 2013).

A technology to increase plant lipid concentrations and
plant biomass has been recently reported (Winichayakul et al.
2013). A synthetic gene encoding a novel lipid-encapsulation
protein, cysteine oleosin, was constitutively co-expressed with
a gene encoding diacylglycerol acyltransferase (DGATI), to
increase energy density and reduce photorespiration of the
model species Arabidopsis thaliana via the production and
encapsulation of neutral lipids (Winichayakul et al. 2013). The
leaf lipid concentration was doubled to ~8% DM, and lipid
concentration in the plant root also increased to 8% of the
DM. The 24% decrease in photorespiration is due to recycling
of CO; in the chloroplast and results in a 50% increase in plant
growth rates and corresponding increases in plant biomass
(Winichayakul et al. 2013).

The same genes have been co-expressed in perennial
ryegrass under the control of light-regulated, green tissue-
specific promoters derived from the rice chlorophyll a/b-
binding protein and ribulose bisphosphate carboxylase genes
(Sakamoto et al. 1991; Jang et al. 1999). When compared with
a control population in containment glasshouse conditions
with non-limiting water and nutrient supply, these GM plants
have a 100% increase in leaf lipid concentration as determined
by analytical chemistry of samples taken from mechanical
defoliation trials as described below. They also have
substantially increased (25%) growth rates, with corresponding
increases in leaf and root biomass (G. T. Bryan, unpubl. data).
These high-energy perennial ryegrass plants are yet to be field
tested; however, they have the potential to provide a significant
step change for pastoral farmers. This phenotype is stable under
a mechanical defoliation regime in glasshouse-propagated
plants. The plants have been defoliated with 4-5-week
regrowth intervals over 30 times, with no negative impact on
the plant (G. T. Bryan, unpubl. data). This technology is
potentially applicable to all plant species with Cj
photosynthesis, and, therefore, can be applied to other forages
such as white clover and lucerne.

Biophysical modelling (W. McG King, R. E. Vibart, unpubl.
data) indicates that perennial ryegrass with these lipid attributes
may enable farmers to have more efficient pasture utilisation,
leading to increased farm profitability. A dairy cow model
(Bryant et al. 2008) was used to estimate the change in feed
intake with an increase in lipid content from 3.9% to 8%.
Results suggested a reduction in feed intake of 30%, with no
change in the production of milk solids. However, on the basis
of a supplemental feeding study (Cosgrove et al. 2004) that
showed a reduction in intake by sheep of 16% (with 8% total
dietary lipid intake), we took a conservative approach and used
15% in all simulations. FarmaxDairy (Bryant ez al. 2010) was
used in three scenarios with different stocking rates (base,
medium and high) using a model of Category 3 Waikato and
Canterbury dairy farms. These scenarios were based on existing
FarmaxDairy simulations developed using data from DairyBase
and other DairyNZ sources and were considered to be typical
for each province. On the basis of this modelling, the potential
benefits include more efficient pasture utilisation, an increase in
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the production of milk solids by 6-12%, up to a 17% reduction
in greenhouse gas (GHG) emissions per kilogram of milk
solids through a reduction in nitrous oxide emissions, and
approximately NZ$900/ha increase in farm revenue (e.g. in the
Waikato scenario, farm revenues increased from NZ$4222/ha
to NZ$5165/ha).

The GHG reduction is predominantly calculated on the
basis that the cysteine oleosin containing pasture would help
address the imbalance of energy sources in the feed, leading to
a reduction of ammonia excreted by the animal and, therefore, a
reduction in nitrous oxide emissions. On the basis of the data
from a meta-analysis of the effects of dietary fat on methane
emissions in cattle (Grainger and Beauchemin 2011), utilising
a forage cultivar with double the lipid concentrations (8% DM),
it may be possible to achieve a 10—17% reduction in methane
emissions. This relatively wide range is due to the seasonal
variation in lipid concentrations already seen in forage plants.
While these plant-lipid data and range of model outputs
are limited and reliant on several assumptions, they all
consistently indicate a beneficial trend with regards to
production, footprint and profit, which may be substantial in
some cases.

Condensed tannins in forage legumes

Condensed tannins are associated with improved animal health
and production due to a reduction in protein degradation and
increased bypass to the animal gut (Aerts et al. 1999; Douglas
et al. 1999; McMahon et al. 2000), especially in pastoral
systems based on high legume content. Lucerne and white
clover are very rich in proteins that are rapidly fermented in
the rumen of grazing animals. This results in gas and foam
formation in the rumen and leads to a potentially lethal
condition known as pasture bloat (McMahon et al. 2000).
Condensed tannins bind excess dietary proteins and bacterial
enzymes, substantially reducing the level of protein degradation
in the rumen. This increases protein bypass to the gut of the
grazing animal, leading to improved absorption of essential
amino acids and increased milk and meat production
(McMahon et al. 2000). The decreased protein degradation in
the rumen also decreases methane production and ammonium
excretion in urine, which can contribute to significant reductions
in emission of the potent GHGs methane and nitrous oxide from
pastures (Smith et al. 2008). The presence of condensed tannins
in animal diets has also been associated with reduced intestinal
parasite load in ruminants (Aerts et al. 1999).

Lucerne and white clover contain negligible concentrations
of condensed tannins in foliage. The opportunity to develop
forage cultivars containing condensed tannins is, therefore, of
considerable interest to the pastoral sector. The genes encoding
the enzymes involved in the biochemical pathway to condensed
tannins are present in lucerne and white clover; however, these
genes are not sufficiently expressed in these species to permit
accumulation of condensed tannins. In contrast to white clover,
rabbit’s foot clover (7. arvense) does accumulate significant
concentrations of condensed tannins in leaves. We have
identified 7aMYBI14 as the regulatory gene from rabbit’s foot
clover responsible for turning on the genes along the pathway
for production of condensed tannins. Silencing the TaMYBI14
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gene in transgenic plants of rabbit’s foot clover blocked the
accumulation of condensed tannins (Hancock et al. 2012).
More importantly, the transgenic transfer of TaMYBI4 to
white clover and lucerne activated production of condensed
tannins in leaves (Hancock er al. 2012). The production of
genetically modified clover and lucerne cultivars expressing
TaMYB14 may provide a valuable approach for a bloat-safe,
highly productive pastoral agriculture with reduced GHG
emissions.

Conclusions

Guidance by industry-agreed breeding priorities, rate of genetic
gain as a key performance indicator, and step changes in specific
traits provide a framework for improvement of pasture species
of value to the Australasian dairy industry. In addressing these
opportunities, progress on introgression of new genetic diversity
for key traits and research in endophyte discovery and biology
are imperative, in addition to the wider pasture- and plant-
science disciplines supporting the pastoral sector. Genomic
selection and improved field-based phenotyping technology
are two near-term opportunities to improve forage breeding
outcomes for Australasian dairy farmers. The need for relevant
phenotypic records underscores the necessity for capability
depth and expertise in field biology and breeding. Keeping
options open for genetic modification offering step changes in
performance is also essential. Continuity of applied-science
delivery will improve the value of forage and provide
options, ultimately contributing to an efficient and sustainable
Australasian dairy industry.
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