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The authors advise that during the study period the definition (not the evaluation) of reported udder health (UDH) changed and
the scale was reversed (i.e. the negative (–) associated with UDH should be positive (+) and vice versa). However, this correction was
omitted in a few places in the published paper. Therefore, the correct text in the ‘Expected genetic changes under selection scenarios’
section should read:

A relative weight of 25% of PME (selection scenario IV) generated a response of PME by –6%, MY by 15%, FY by 6%, PY by 11%,
fertility by –4%, BCS by –11%, UDH by 13% and longevity by 22%.

For example by the addition of 25% of LMI, the resulting response would be for LMI by –24%,MY by 29%, FY by 16%, PY by 28%,
fertility by –10%, BCS by –13%, UDH by 13% and longevity by 23%.

The correct versions of Tables 5 and 6 are as follows:

Table 6. Selection responses (percentage of change) of environmental, production and functional traits to LMI selection scenarios
LMI, log-transformed methane intensity; MY, milk yield; FY, fat yield; PY, protein yield; Fertility, Combined female fertility; BCS, body condition score;
UDH, udder health (reversed somatic cell score); Selection scenario 1 = current Walloon dairy cattle selection program, from second to fifth selection scenarios

were addition of PME by 5%, 12.5%, 25% and 50% and proportional decrease on other traits respectively

Selection scenario LMI MY FY PY Fertility BCS UDH Longevity

I –14.51 16.68 17.25 22.25 –3.33 –7.97 15.94 27.83
II –16.38 19.24 17.06 23.48 –4.70 –8.94 15.26 26.79
III –19.19 23.07 16.78 25.33 –6.77 –10.40 14.23 25.23
IV –23.85 29.45 16.29 28.40 –10.20 –12.82 12.53 22.63
V –33.19 42.21 15.33 34.56 –17.08 –17.66 9.12 17.43

Table 5. Selection responses (percentage of change) of environmental, production and functional traits to PME selection scenarios
PME, predicted methane emissions; MY, milk yield; FY, fat yield; PY, protein yield; Fertility, Combined female fertility; BCS, body condition score;
UDH, udder health (reversed somatic cell score); Selection scenario 1 = currentWalloon dairy cattle index (VeG), from second to fifth selection scenarios were

addition of PME by 5%, 12.5%, 25% and 50% and proportional decrease on other traits respectively

Selection scenario PME MY FY PY Fertility BCS UDH Longevity

I 1.94 16.68 17.25 22.25 –3.33 –7.97 15.94 27.83
II 0.36 16.35 14.95 20.07 –3.44 –8.57 15.36 26.73
III –2.01 15.85 11.49 16.80 –3.61 –9.46 14.48 25.09
IV –5.95 15.02 5.73 11.35 –3.88 –10.95 13.03 22.35
V –13.84 13.35 –5.80 0.46 –4.44 –13.92 10.12 16.86
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Abstract. Methane (CH4) emission is an important environmental trait in dairy cows. Breeding aiming to mitigate CH4

emissions require the estimation of genetic correlations with other economically important traits and the prediction of their
selection response. In this study, test-day CH4 emissions were predicted from milk mid-infrared spectra of Holstein cows.
PredictedCH4emissions (PME)and log-transformedCH4 intensity (LMI) computedas thenatural logarithmofPMEdivided
by milk yield (MY). Genetic correlations of PME and LMI with traits used currently were approximated from correlations
between estimated breeding values of sires. Valueswere for PMEwithMY0.06, fat yield (FY) 0.09, protein yield (PY) 0.13,
fertility 0.17; body condition score (BCS) –0.02; udder health (UDH) 0.22; and longevity 0.22.As expected by its definition,
values were negative for LMI with production traits (MY –0.61; FY –0.15 and PY –0.40) and positive with fertility (0.36);
BCS (0.20); UDH (0.08) and longevity (0.06). The genetic correlations of 33 type traits with PME ranged from –0.12 to 0.25
and for LMI ranged from –0.22 to 0.18. Without selecting PME and LMI (status quo) the relative genetic change through
correlated responses of other traits were in PME by 2% and in LMI by –15%, but only due to the correlated response to
MY. Results showed for PME that direct selection of this environmental trait would reducemilk carbon foot print but would
also affect negatively fertility. Therefore, more profound changes in current indexes will be required than simply adding
environmental traits as these traits also affect the expected progress of other traits.

Additional keywords: dairy cows, genetic correlation, methane intensity, predicted methane emissions, selection
response.
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Introduction

The breeding goal in dairy cattle should support the profitability
of milk production. Genetic correlations between milk yield
(MY) and reproduction, health and fitness traits are negative,
and a decline in many functional traits was reported by many
studies (Egger-Danner et al. 2015). Accordingly reproduction,
health and fitness traits have been included in breeding goal and
also selection indices over the past decade. This has resulted in
improvement in these traits (Egger-Danner et al. 2015).However,
a novel class of traitswill need to be considered in the future, those
linked to environment concerns. There are at least two major
reasons why they are not yet addressed. First direct accurate
measurements of these traits on a large scale are difficult to
impossible, making their use as selection index traits difficult.
Second introduction of environment concerns into breeding goal
is also very difficult due to the knowledge gap on how to improve
them most efficiently without putting profitability into jeopardy.
A major source of the environmental footprint from dairy system
is methane (CH4) emissions, which is responsible for 4% of
the anthropogenic CH4 emission (FAO 2010). The enteric
fermentation in the rumen accounts for a major part of total

CH4 emitted from dairy cows. In addition to the environmental
impact, CH4 is associated in the literature to a loss of 2–12% of
gross energy intake (Johnson and Johnson 1995). Therefore,
reducing the CH4 emitted by dairy cows is of both, economic
and environmental, interests. Genetic gains are cumulative and
small improvements per generation can build over time. To select
any new trait, itmust have genetic variation and showheritability.
Even with currently only limited research available, CH4 traits
predicted frommilk fatty acids (Kandel et al. 2015) andmeasured
through non-invasivemethod (Lassen andLøvendahl 2016) have
shown sufficient heritability. Previous studies have shown that
mid-infrared (MIR) spectroscopy can be used to predictmilk fatty
acids (Soyeurt et al. 2011) and that milk fatty acids are indirectly
related to CH4 emission (Chilliard et al. 2009; Dijkstra et al.
2011). Also, the heritability of MIR milk fatty acids predicted
CH4 emissionwas estimated between 0.21 and 0.40 (Kandel et al.
2015). Moreover, direct prediction of CH4 from MIR spectra
without the use of milk fatty acids would be a step forward
becausebyavoiding intermediate steps, predictionerrors couldbe
minimised (Gengler et al. 2016). Dehareng et al. (2012) and
Vanlierde et al. (2015, 2016) demonstrated that quantification of
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CH4 emission directly by MIR spectroscopy from milk samples
was feasible and can be useful to generate a large number of
indirect CH4 phenotypes. Vanlierde et al. (2015) supported by
results from Vanrobays et al. (2016) showed that links between
CH4 and milk composition are lactation stage specific.

Genetic selection of CH4 emission traits predicted from
MIR spectra of milk samples can be imagined because recent
research demonstrated genetic variance and sufficient heritability
(Kandel et al. 2017). However, the addition of environmental
impact traits into the selection goal needs the careful
consideration of its impact on other traits in this goal. Before
adding any novel traits, additional information about genetic
correlations with other objective traits that are already in place
and their predicted response are needed. Amongst the
correlations needed are those with milk production traits, with
functional traits like fertility and with health traits. Udder
health (UDH) was represented by somatic cell score (SCS) on
a reversed scale. Even if they are not in the breeding objective,
correlations to type and body condition scores (BCS), will allow
assessing the impact on these traits too.

Therefore, the objective of this study was 2-fold, first to
estimate the genetic correlations between environmental
impact traits and other traits of interest, and second to quantify
their predicted selection response in simple scenarios.

Materials and methods

Genetic valuation of environmental impact traits
Currently no routine genetic evaluation exists in the Walloon
region of Belgium for environmental impact traits linked to CH4

emissions. However, in order to approximate genetic correlations
among traits, preliminary evaluations were necessary.

Milk samples and prediction of environmental traits
Milk samples were collected from Holstein cows in their first

three lactations from January 2010 and March 2014 as routine
Walloon milk recording. All milk samples were analysed using
a Milkoscan FT6000 spectrometer (Foss, Hillerød, Denmark)
by the milk laboratory ‘Comité du Lait’ (Battice, Belgium) to
quantify the contents of fat and protein and to record the spectral
data. Production records ranged between 5 and 365 days in milk
(DIM). Official International Committee of Animal Recording
(ICAR) norms were applied. Therefore, observations outside of
ranges of 3 –99 kg MY, 1–7% protein content and 1.5–9% fat
content were not used for the calculations as suggested in these
norms (ICAR 2016).

The CH4 emission (PME; g/day) was predicted from the
recorded and standardised (Grelet et. al. 2015) milk MIR
spectral database of Walloon milk recording using the
equation developed by Vanlierde et al. (2015). The predicted
CH4 intensity (PMI; g/kg of milk) was defined as the ratio of
PME divided by the total milk MY recorded for the considered
test-day. The distribution of PMI was non-normal and skewed
therefore (Fig. 1) presenting a log-normal aspect. Therefore, PMI
was log-transformed and called log-transformed CH4 intensity
(LMI) using the natural logarithm. The datasets of predicted
environmental traits had 700 505 test-day records from 58 412
first three parity cows sired by 2455 bulls. The heritabilities of
PME and LMI were estimated to be 0.25 and 0.18 respectively

(Kandel et al. 2017).Within cow, if parity 3was present, parities 1
and 2 had to be present, and if parity 2was present, parity 1 had to
be present. Animals which had, based on their pedigree, at least
75%of confirmHolstein genetics in their breed compositionwere
kept for this study. Pedigree data were extracted from pedigree
used for routine Walloon genetic evaluation and contained
119 068 animals born after 1990, which permitted pedigree up
to three generations back.

Model
A single trait multiple lactation random regression test-day

model was used to estimate the genetic parameters and breeding
values of each of PME and LMI. The model can be presented as
follows:

y ¼ XbþQðHhþ Zpþ ZuÞ þ e

where y was the vector of observations for each trait (PME or
LMI), b was the vector of fixed effects (herd · test-day, days in
milk (24classesof15days’ interval), andageat calving (9 classes:
21–28months, 29 to 32months, and 33months andmore for first
lactation; 31–44months, 44–48months, and 49months andmore
for second lactation and 41–57 months, 57–60 months, and
60 months and more for third lactation), h was the vector of
random within-herd lactation curve effects, p was the vector of
permanent environmental (PE) random effects, u was the vector
of additive genetic effects; Q was the matrix containing the
coefficients of 2nd order Legendre polynomial regressors;
e was the vector of residuals; X was an incidence matrix
assigning observations to levels of fixed effects., H and Z
were incidence matrices assigning regressors to random
regression coefficients.

Variance components and solutions of mixed model
equations
Thevariance componentswere estimated byBayesianmethod

with Gibbs sampling. Priors of variance components were
estimated using univariate models using the average information
REML. Posterior means of (co)variance components were
calculated using 90 000 samples after a burn-in of 10 000
samples. The estimated breeding values (EBV) were calculated
using a BLUP approach using obtained variance components.

Economically important traits
The Walloon Breeding Association (Ciney, Belgium) uses for
Holstein dairy cows a selection index called VeG (Vanderick
et al. 2015). Table 1 gives the relative importance of the different
traits used in the current index. This index was obtained to select
for a breeding goal that was derived based on a lifetime economic
function including production and functional traits (N. Gengler,
pers. comm.). The three categories of traits under routine genetic
evaluation in Wallonia and included in the selection index are
production, functional traits and type traits. The later were not
considered having an economic value on their own, but
contributing to the traits in the breeding goal (N. Gengler,
pers. comm.). Production traits included MY, fat yield (FY)
and protein yield (PY), functional traits were UDH and
longevity and more recently fertility and calving traits. These
traits were (a) combined female fertility (CFF), (b) direct calving
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ease (DCE) and (c) maternal calving ease (MCE). The genetic
correlations were calculated for all fertility-related traits however
response to selection was only calculated for combined female
fertility. CFF representing pregnancy rate and higher values are
better. Direct calving ease and maternal calving ease were just
recently added in selection index; therefore, the responses were
not calculated in this study however genetic correlations were
calculated. The trait BCS is currently used in computations of
EBV for combined fertility and not directly in the index or even
breeding goal. However, there are indications (e.g. Vanrobays
et al. 2016) thatCH4production through its links to fatty acids and
intake interactswith body fatmobilisation. Effects of selection on

CH4 were also computed for BCS, an indicator of body fat
mobilisation and, indirectly, an important element for a long-
term effect on fertility. Longevity was also calculated from direct
longevity trait plus genetically correlated type traits. In addition to
production and functional traits, a total of 33 type traits (recorded
and derived) are also part of Walloon animal genetic evaluation
system. Type traits were broadly classified as body capacity,
udder and feet and leg traits. Details of all these traits definitions,
their genetic model for parameter estimations are described in
Vanderick et al. (2015) and Croquet et al. (2006). The EBV of
sires for production, functional and type traits were extracted
from the database containing the EBV computed for the official
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Fig. 1. Frequencydistribution of 700 505 records of (a) predictedmethane intensity (g/kg ofmilk) and (b) log-transformed
methane intensity for 58 412 Holstein cows.
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Walloon genetic evaluation 2016March run. These EBVwere of
domestic, but more often of Multiple Across Country Evaluation
(MACE) origin, provided by the INTERBULL Center (Uppsala,
Sweden).

Approximated genetic correlations
Very few genetic evaluation systems are completely multivariate
across all the index traits.An implicationof this is also that genetic
correlations amongst these traits are not known. In order to
achieve the objective of this study approximated values were
needed. Pearson’s correlations among EBV of sires were
computed in order to get lower-bound estimates of genetic
correlations. The productive life of higher yielding cows goes
over 2.5 to 3.2 parities before being culled (e.g. Hare et al. 2006).
As life (3 parities) genetic correlations and selection response is
easy to understand and interpret, therefore in this studywe studied
all traits cumulated over life time (at least 3 parities). A total of
2455 bulls had daughters with environmental records and
subsequently EBV. These EBV were centred and expressed as
average daily values but based on cumulative 305-day emissions
over the three lactations (Table 2). For this 2455 sires the
corresponding sire EBV for current official genetic evaluations
were selected when they showed sufficient reliability (limits
depending upon the traits: 50–99% for production traits and
25–99% for functional and type traits). Table 2 gives the
figures of selected bulls ranging from 1369 to 1427 for

production and functional traits. The equivalent figure was
1422 sires for type traits.

Selection scenarios and predicted responses
Five selection scenarios were proposed to calculate the selection
response. Scenario I was the current Walloon selection index
VeG (status quo), and from second to fifth selection scenarios
were 5%, 12.5% and 25% and 50% addition of CH4 emission
traits (PME respectively LMI) and proportional reduction on
other traits present in current index (Table 1). The weight of CH4

traits were put negative because we were interested to reduce the
CH4 emission from our dairy production. Relative genetic
changes for each trait from selection based on these alternative
total indexes were estimated as r = b0G where r = vector of
relative genetic gain on all traits; and b = vector of proportional
index weights; G = matrix of genetic correlations between
index traits and goal traits. As only relative changes were
relevant for this study, selection intensity was set to 1 and
response was calculated for one generation.

Results

Environmental traits and economic important traits
descriptions

The average � s.d. PME was 443.86 � 77.04 (g/day) and LMI
was 2.87 � 0.36 for first three lactations. The sire EBV of

Table 1. Current Walloon selection index VeG for dairy cows (Scenario I) and selection scenarios for environmental traits (II-V)
VeM, feet and leg economic index; VeC, capacity economic index; VeP, udder economic index; PME, predicted methane emission (g/day); LMI, log-

transformed methane intensity

Sub-index 2nd order sub-index Traits Weight Selection scenarios
I (= VeG) II III IV V

Production (VeL) – 48 48 45.60 42 36 24
– Milk (kg) – 10 9.50 8.75 7.50 5
– Fat (kg) – 9 8.55 7.87 6.75 4.50
– Protein (kg) – 29 27.55 25.37 21.75 14.50

Functional (VeF) – 28 28 26.60 24.5 21 14
– Udder health – 3.36 3.19 2.94 2.52 1.68
– Longevity – 20.72 19.68 18.13 15.54 10.36
– Total fertility – 1.96 1.86 1.71 1.47 0.98
– Direct calving ease – 0.84 0.79 0.73 0.63 0.42
– Maternal calving ease – 1.12 1.06 0.98 0.84 0.56

Type (VeT) – 24 24 22.8 21 18 12
VeM Rear leg set – 1.40 1.33 1.22 1.05 0.70
– Rear leg rear view – 0.70 0.66 0.61 0.52 0.35
– Bone quality – 3.70 3.51 3.23 2.77 1.85
– Feet and legs – 3.20 3.04 2.80 2.4 1.60

VeC Overall development 0.30 0.28 0.26 0.22 0.15
– Final conformation – 0.50 0.47 0.43 0.37 0.25
– Overall udder – 0.20 0.19 0.17 0.15 0.10

VeP Fore udder – 2.00 1.90 1.75 1.50 1
– Rear udder height – 3.20 3.04 2.80 2.40 1.60
– Udder support – 1.30 1.23 1.13 0.97 0.65
– Udder depth – 3.20 3.04 2.80 2.40 1.60
– Front teat placement – 0.50 0.47 0.43 0.37 0.25
– Rear teat placement – 2.50 2.37 2.18 1.87 1.25

Teat length 1.30 1.23 1.13 0.97 0.65
Environment PME or LMI – 5 12.50 25 50
Total (VeG) 100 100 100 100 100
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CH4 emissions traits that had daughters in production were
accumulated over three parities, expressed on a daily basis and
presented in Table 2. Similarly the corresponding sire EBV
obtained from official Walloon genetic evaluation for production
(MY, FY and PY) and functional traits (Fertility, BCS, UDH and
longevity) were also presented in Table 2. Average reliabilities of
selected groups ranged between 61 (for maternal calving ease) and
91 (for UDH). The selected sire EBV for type traits are presented in
Table 3 with average reliabilities between 74 and 91.

Genetic correlations between environmental traits
and economic important traits

Theapproximate genetic correlationsbasedoncorrelationbetween
sire EBV, hereafter called for simplicity genetic correlation,
between PME and LMI and production and functional traits are
presented in Table 4. The genetic correlation between PME and
LMI was estimated 0.33. PME had small positive genetic
correlations with milk production traits i.e. 0.06 with MY,
0.09 with FY and 0.13 with PY. However, the genetic
correlations between LMI and milk production traits were
negative and in case with MY was highly negative (–0.61)
andmoderate negativewithPY(–0.40) and lownegative (–0.15)
with FY. The genetic correlation of combined female fertility
with bothCH4 traits was positive but higher in case of LMI (0.36
vs 0.17). Other reproductive traits (DCE and MCE) also had
positive genetic correlation with PME however negative
correlation were observed between LMI and MCE. The
correlation between PME and BCS was very close to zero
but 0.20 between LMI and BCS. UDH had positive genetic
correlation with both CH4 traits. Finally, longevity had positive
genetic correlation with both CH4 traits (Table 4).

The genetic correlations between CH4 traits and type traits are
reported in Table 3. The genetic correlation between PME and 33
type traits ranged from –0.12 to 0.25 and between LMI and 33
type traits ranged from–0.22 to 0.18. The bodycapacity traits also
had in general positive genetic correlations with PME and
negative genetic correlations with LMI. The bodyweight
related traits like stature and angularity had positive genetic
correlations with PME and negative genetic correlations
with LMI. The udder capacity traits also had in general

positive genetic correlation with PME and negative genetic
correlations with LMI.

Expected genetic changes under selection scenarios

The selection response to each scenario of selecting PME is
reported in Table 5. The PMEwould be increased by 2%without
selecting this trait but through correlated responses of other traits.
A relative weight of 12.5% on PME (selection scenario III) was
necessary to decrease PME. A relative weight of 25% of PME
(selection scenario IV) generated a response of PMEby –6%,MY
by 15%, FY by 6%, PY by 11%, fertility by –4%, BCS by –11%,
UDH by –13% and longevity by 22%. In all scenarios MY, FY
and PY also increased except with the extreme selection scenario
V (50%weight onPME),whichdecreasedFYandPY. In all PME
reduction scenarios, fertility, BCS and UDH would decrease.
Given that the longevity has currently a very high weight in
Walloon index (~21%) longevity has a very positive response in
selection scenario I, however the progress would be reduced with
each scenario selecting for lower PME.

The favourable genetic gain would be achieved for LMI in all
selection scenarios (Table 6). The expected response of LMI
would range from –15% to –33% from selection scenario I to
selection scenario V. MY, FY and PY would increase in each
scenario. For example by the addition of 25% of LMI, the
resulting response would be for LMI by –24%, MY by 29%,
FY by 16%, PY by 28%, fertility by –10%, BCS by –13%, UDH
by –13% and longevity by 23%.

Discussion

The final objective of this study was to assess the response of
selection for environmental traits by selecting them directly as
well as the correlated responses of other economic important
traits. Similarly, the motivation was also to improve the
understanding of the genetic influence and their correlations
on CH4 emission by dairy cows. Currently, there is no direct
economic incentive for a dairy producer to develop a program
which reduces CH4 emissions. Given that increasing significance
of climate change, in national agendas but also for the dairy
industry, environmental traits would need to be included in dairy
cattle breeding. Similarly, societal demands are changing from

Table 2. Sire estimated breeding values (EBV) of environmental impact, production and functional traits in the Walloon Holstein dairy population
used in this study, all traits except environmental traits are from official genetic evaluation of March 2016 (domestic and MACE EBV)

Estimated breeding values for predicted methane emission (PME) and log-transformed methane intensity (LMI) were computed in this study. PME and LMI
were centred for the 2455 sires, all other traits expressed in their original scales

Traits Sires Mean s.d. Minimum Maximum Average reliability

PME (g/day) 2455 0.00 9.57 –31.80 33.67 –

LMI 2455 0.00 0.46 –2.17 2.04 –

Milk yield (kg/lactation) 1427 331.97 492.74 –1988 1995 86
Fat yield (kg/lactation) 1427 11.99 19.43 –50 77 86
Protein Yield (kg/lactation) 1427 9.92 15.30 –58 56 86
Combined female fertility (mean = 100, s.d. = 10) 1425 97.94 10.20 65 141 81
Direct calving ease (mean = 100, s.d. = 10) 1406 93.42 15.29 34 144 67
Maternal calving ease (mean = 100, s.d. = 10) 1369 96.55 15.19 41 150 61
Body condition score (mean = 0; s.d. = 1) 1392 –0.27 0.91 –2.94 3.49 71
Udder health (mean = 100, s.d. = 10) 1426 96.19 13.24 48 134 91
Longevity (mean = 100, s.d. = 10) 1425 93.41 17.45 29 147 78
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both environmental and economic perspectives and CH4

emission traits could be added in the breeding goals defined
for dairy cows in the near future (Hayes et al. 2013).

All of genetic correlations between production, functional and
type traits and CH4 emissions traits were revolving around the
efficiency and inefficiency of animal from intake, digestion,
production, reproduction and survival. Dairy cows seem to
partition first energy for production, then for reproduction and
finally for survival. More efficient dairy cows will produce more
milk relative to the amount of feed ingested and less energy lost as
CH4. All production traits had small positive correlations with
PME and high negative correlations with LMI, as was expected
given its definition. The very negligible positive genetic
correlation of PME with production traits suggested that these
traits are not able to predict CH4 emissions alone in dairy cows on
a genetic level. Similarly, positive genetic correlations observed
between PME and fat and protein corrected MY (0.07 � 0.09)
(Lassen and Løvendahl 2016) was similar to this study (0.06with
MY). There is ongoing debate on those figures because they
appear low, but one should not forget that even if PME is also
driven by intake it is also strongly related to energy lost or energy
efficiency, a different mechanism a priori not (strongly) linked to
intake. On a phenotypical level our recent research (P. Kandel,
unpubl. data) showed that with increasing MY, the correlation

Table 3. Sire estimated relative breeding values (RBV) of type traits (mean = 0; s.d. = 1) in the Walloon Holstein dairy population for the genetic
evaluations of March 2016 (domestic and MACE RBV) used and their genetic correlations with environmental impact traits (PME and LMI)

PME, predicted methane emissions (g/day); LMI, log-transformed methane intensity

Traits Mean s.d. Minimum Maximum Average reliability Genetic correlations
PME LMI

Stature 0.18 0.96 –3.11 3.22 90 0.15 –0.06
Chest width 0.12 1.34 –4.42 4.52 82 0.01 –0.11
Body depth 0.16 1.15 –3.98 4.40 86 0.00 –0.10
Chest depth 0.14 1.14 –3.85 3.65 86 0.04 –0.12
Loin strength –0.03 1.08 –3.93 3.72 87 0.00 –0.01
Rump length 0.21 1.13 –3.61 4.02 89 0.17 –0.07
Rump angle –0.14 1.42 –5.75 5.28 91 0.01 –0.09
Hips width 0.17 1.08 –3.50 3.74 89 0.03 –0.16
Rump width 0.10 1.29 –4.81 4.85 89 –0.01 –0.10
Foot angle 0.14 1.45 –4.47 4.79 75 0.06 –0.04
Rear leg set 0.08 1.38 –3.92 5.04 87 0.00 0.05
Bone quality 0.13 1.03 –3.40 3.34 87 0.10 0.10
Rear leg rear view –0.04 1.55 –5.12 5.64 81 0.04 –0.03
Udder balance 0.13 1.01 –3.99 3.05 89 0.06 –0.08
Udder depth 0.09 1.29 –4.16 4.47 91 0.25 0.18
Teat placement side 0.06 1.17 –4.18 3.67 85 –0.09 –0.02
Udder support 0.28 1.23 –4.61 3.91 79 0.02 –0.13
Udder texture 0.23 0.99 –3.29 3.37 84 0.07 –0.13
Fore udder 0.14 1.25 –4.25 3.30 80 0.11 0.07
Front teat placement 0.17 1.23 –3.72 4.03 90 0.07 –0.11
Teat length –0.01 1.30 –5.39 4.97 92 –0.12 –0.13
Rear udder height 0.21 1.12 –3.85 3.79 83 0.13 –0.13
Rear udder width 0.16 0.91 –3.38 2.91 86 0.02 –0.22
Rear teat placement 0.29 1.21 –3.99 4.03 90 0.02 –0.12
Angularity 0.19 0.90 –3.21 3.11 76 0.12 –0.11
Overall development 0.14 1.24 –4.19 4.05 87 0.09 –0.10
Overall rump 0.03 1.29 –4.23 4.85 86 0.01 –0.17
Overall feet and leg score 0.10 1.24 –4.73 4.03 75 0.07 –0.03
Overall udder score 0.18 1.00 –3.59 3.39 78 0.16 0.02
Overall fore udder 0.20 1.16 –4.33 3.56 85 0.17 0.06
Overall rear udder 0.10 1.09 –4.11 3.30 85 0.13 –0.05
Overall dairy trait 0.13 0.95 –3.51 3.07 83 0.12 –0.09
Overall conformation score 0.19 0.89 –3.29 2.89 74 0.15 –0.06

Table 4. Genetic correlation between environmental traits with
production and functional traits of selection of dairy cows

LMI, log-transformed methane intensity

Traits Predicted methane
emission

Log-transformed
methane intensity

LMI 0.33 /
Milk yield 0.06 –0.61
Fat yield 0.09 –0.15
Protein yield 0.13 –0.40
Fertility 0.17 0.36
Direct calving ease 0.37 0.00
Maternal calving ease 0.15 –0.11
Body condition score –0.02 0.20
Udder health 0.22 0.08
Longevity 0.22 0.06
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withPMEis decreasing andeventually inversing as alwayshigher
producing animals produce more and more from body reserve
mobilisation than intake. In beef cattle, using small preliminary
analysis using genomic selection, response to selection of CH4

yield (CH4/kg drymatter intake)was estimated to be reduction by
4% in10years (Hayes et al. 2016). In dairy cows, usingprediction
from feed intake, PMEwould at least theoretically decrease in the
order of 11–26%in10years (deHaas et al. 2011).However, those
predictions were totally different than prediction used in this
study as they assumed that the major driving factor behind PME
were only intake driven, therefore, direct comparison was
difficult.

The reduction of LMI by 15% through the current Walloon
selection index was similar to results obtained by Bell et al.
(2011). These authors demonstrated that genetic selection for
energy-corrected milk reduced CH4/energy-corrected milk,
(which is similar to LMI) by 15% for the first three lactations
until mature size and maximum MY are achieved. Moreover,
increasing selection pressure for reduced LMI gives a strong
positive reaction of MY and associated traits. Therefore, as
expected from these results, the functional traits would have
negative to strongly negative correlated response. Fertility and
BCS would be mostly affected but also longevity.

The genetic correlation between environmental traits and
fertility could indicate that more resource inefficient cows show
better female fertility and therefore simultaneous selection for
both traits might be difficult. However, a breeding strategy
emphasising female fertility traits would improve cow fertility
and reduce within-herd replacement rates and consequently
reduced replacements contribute to decreasing CH4 emissions
in herd level (Knapp et al. 2014) but the relationship in individual
level is not known yet.

TheBCSwould decrease in all scenarios of selection on either
PME or LMI. The substantial genetic correlation between BCS
and LMI reduced BCS and positive genetic correlation between
BCS and fertility (Bastin et al. 2012) had led to reduction in both
traits. It is also well known that the early lactation period is
characterised by body fat mobilisation, negative energy balance
(vanKnegsel et al. 2007), which is also related to CH4 emissions,
so test-day genetic correlations are more important than average
of whole lactations.

The fact that longevity had also positive genetic correlations
with emissions could indicate that the higher CH4-producing
cows might be more efficient in survival. However, like for
improved fertility, by promoting longevity emissions from
replacement would be diluted. In addition their effect in
individual level of emission is unresolved (Grandl et al. 2016).

In sheep, it was demonstrated that smaller body confirmation
animals had smaller rumen and shorter duration of ruminal
passage, which leads to less CH4 (Goopy et al. 2014). In this
study, almost all capacity and body size-related traits like stature,
chest width, rump length and angularity had positive genetic
correlations with PME,which suggested increased body capacity
andbodyweight increased alsoPME.However, the bodycapacity
type traits had negative genetic correlationswithLMI, suggesting
that selection for LMI would preserve these traits.

Even without selection on LMI the reduction in CH4 intensity
was already substantial due to the negative correlation with
production traits. The speed of reduction would be faster if we
add this new trait to the selection index, however the decrease in
fertilitywould be substantial unless fertility traits were also added
or their weight increased in the selection index.

This study has some limitations. First, the analyses were only
basedoncorrelationsof sireEBV.Amoredirectmethodwouldbe

Table 5. Selection responses (percentage of change) of environmental, production and functional traits to PME selection scenarios
PME,predictedmethane emissions;MY,milk yield; FY, fat yield; PY, protein yield; Fertility,Combined female fertility;BCS, body condition score;UDH, udder
health (somatic cell score); Selection scenario 1 = currentWalloon dairy cattle index (VeG), from second tofifth selection scenarioswere addition of PMEby5%,

12.5%, 25% and 50% and proportional decrease on other traits respectively

Selection Scenario PME MY FY PY Fertility BCS UDH Longevity

I 1.94 16.68 17.25 22.25 –3.33 –7.97 –15.94 27.83
II 0.36 16.35 14.95 20.07 –3.44 –8.57 –15.36 26.73
III –2.01 15.85 11.49 16.80 –3.61 –9.46 –14.48 25.09
IV –5.95 15.02 5.73 11.35 –3.88 –10.95 –13.03 22.35
V –13.84 13.35 –5.80 0.46 –4.44 –13.92 –10.12 16.86

Table 6. Selection responses (percentage of change) of environmental, production and functional traits to LMI selection scenarios
LMI, log-transformedmethane intensity;MY,milk yield; FY, fat yield; PY, protein yield; Fertility, Combined female fertility; BCS, body condition score; UDH,
udder health (somatic cell score); Selection scenario 1 = currentWalloon dairy cattle selection program, from second to fifth selection scenarios were addition of

PME by 5%, 12.5%, 25% and 50% and proportional decrease on other traits respectively

Selection scenario LMI MY FY PY Fertility BCS UDH Longevity

I –14.51 16.68 17.25 22.25 –3.33 –7.97 –15.94 27.83
II –16.38 19.24 17.06 23.48 –4.70 –8.94 –15.26 26.79
III –19.19 23.07 16.78 25.33 –6.77 –10.40 –14.23 25.23
IV –23.85 29.45 16.29 28.40 –10.20 –12.82 –12.53 22.63
V –33.19 42.21 15.33 34.56 –17.08 –17.66 –9.12 17.43
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to estimate genetic correlations from the data using appropriate,
e.g. bivariate, models. However, such approach would have
required variance components estimation for a great number of
bivariate models including complicated, e.g. random regression,
models. Therefore, for this study, approximations were used and
as presented by Calo et al. (1973), correlations between breeding
values do not fully reflect the genetic relationships between two
traits and they might underestimate them. Second, a better
approach to create a selection index would be to put
appropriate economic weights to environmental traits instead
of adding a linear percentage in selection scenarios. However,
even if there is an economic value of CH4 emission in the
industrial sector, this is not yet the case in agriculture. An
alternative strategy would be to optimise expected gains,
developing weights retrospectively. Third, the responses
presented in Tables 5 and 6 assume that all breeding values for
all traits have equal reliability. That might not be the case at the
moment of selection. It is therefore somewhat idealised scenarios
but in practice accuracywill differ due to heritability and different
recording (e.g. longevity and fertility). However, this study
showed practical significance of current selection and its effect
on PME and LMI where PME is increasing but CH4 intensity
decreasing.

Conclusions

This study presented novel results. First, under the hypothesis to
continue using the current Walloon index, without directly
selection for environmental traits, PME would be increased
but LMI would be decreased through correlated responses to
the selection for correlated traits. This is the expected result that
gains are currently only achieved per unit produced. Second, by
giving direct selection pressure on environmental traits, they
would respond to selection, but would also change fundamentally
the responses in other traits. These responses were quantified in
various scenarios.One of the scenarios– reducing all traitsweight
by 25% of current index and addition of 25% of PME would
reduce gains in FY and PY and almost all functional traits
(fertility, BCS, and longevity) would need to be protected. The
addition of 25% of LMI would shift the emphasis on production
traits, especiallyMY, and affect even stronger functional traits. In
conclusion, direct selection of environmental traits would reduce
milk carbon foot print but more profound changes in current
indexes will be required than simply adding environmental traits,
as adding these traits to the selection index would affect the
equilibrium between the other traits.
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