
Overcoming nature’s paradox in skeletal muscle to
optimise animal production

Gordon S. Lynch A,B and René KoopmanA

ACentre for Muscle Research, Department of Physiology, The University of Melbourne, Vic. 3010, Australia.
BCorresponding author. Email: gsl@unimelb.edu.au

Abstract. Nature’s paradox in skeletal muscle describes the seemingly mutually exclusive relationship between muscle
fibre size and oxidative capacity. In mammals, there is a constraint on the size at which mitochondria-rich, high
O2-dependent oxidative fibres can attain before they become anoxic or adapt to a glycolytic phenotype, being less
reliant on O2. This implies that a muscle fibre can hypertrophy at the expense of its endurance capacity. Adaptations to
activity (exercise) generally obey this relationship, with optimal muscle endurance generally being linked to an enhanced
proportion of small, slow oxidative fibres andmuscle strength (force and/or power) being linked to an enhanced proportion
of large, fast glycolytic fibres. This relationship generally constrains not only the physiological limits of performance
(e.g. speed and endurance), but also the capacity to manipulate muscle attributes such as fibre size and composition, with
important relevance to the livestock and aquaculture industries for producing specific muscle traits such as (flesh) quality,
texture and taste. Highly glycolytic (white) muscles have different traits than do highly oxidative (red) muscles and so the
ability to manipulate muscle attributes to produce flesh with specific traits has important implications for optimising meat
production and quality. Understanding the biological regulation of muscle size, and phenotype and the capacity to
manipulate signalling pathways to produce specific attributes, has important implications for promoting ethically
sustainable and profitable commercial livestock and aquaculture practices and for developing alternative food sources,
including ‘laboratory meat’ or ‘clean meat’. This review describes the exciting potential of manipulating muscle attributes
relevant to animal production, through traditional nutritional and pharmacological approaches and through viral-mediated
strategies that could theoretically push the limits of muscle fibre growth, adaptation and plasticity.
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Introduction

Skeletal muscles are remarkably plastic, capable of
modifying their phenotype according to functional demand
and perturbations in innervation, load, hormones and
other regulating factors. Muscle fibres can be defined
physiologically by their speed of contraction and resistance to
fatigue, which are properties that are determined by contractile
and regulatory protein isoforms and metabolism. Quickly
contracting muscles are composed predominantly of fast
(myosin) isoforms; slowly contracting muscles are composed
of slow (myosin) isoforms. Metabolic properties provide the
capacity for sustained contraction, with muscles contracting
forcefully but infrequently relying on anaerobic metabolism,
and more frequently contracting muscles relying on oxidative
metabolism (Pette 2001; Schiaffino 2007; Schiaffino and
Reggiani 2011; Lynch 2017).

While skeletal muscles can adapt to imposed demands, there
are physiological constraints on muscle fibre size and
composition that ultimately limit adaptation. An intriguing
and unresolved question in muscle biology is what governs
and limits adaptation and plasticity, which is often described

as the ‘muscle paradox’ (van Wessel et al. 2010). This implies
that muscle fibres challenged to simultaneously increase
their size/mass/strength (hypertrophy) and fatigue resistance
(oxidative capacity) will increase strength or fatigue
resistance to a lesser extent than do fibres increasing either of
these attributes alone (Fig. 1; van der Laarse et al. 1998; van
Wessel et al. 2010; van der Zwaard et al. 2018). Adaptations to
activity (exercise) generally obey this relationship, with optimal
muscle endurance being generally linked to an enhanced
proportion of small, slow oxidative fibres, and muscle
strength (force and/or power) being linked to an enhanced
proportion of large, fast glycolytic fibres. The paradox has
(until now) constrained not only the physiological limits of
performance (e.g. speed and endurance), but also the capacity
to manipulate muscle attributes such as fibre size and
composition, with potential application to the livestock and
aquaculture industries for producing specific muscle traits
relevant to flesh quality, texture and taste. Muscle quality and
quantity are strongly influenced by environmental factors (e.g.
nutrition and exercise) and manipulating pathways regulating
muscle protein and fat composition can alter texture and fat
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deposition. Genetic selection to promote muscle size has been
negatively correlated with textural quality in fish and livestock
(Chen and Lee 2016; Moghadam et al. 2017; Robinson et al.
2017), such that selecting for muscle growth typically leads to
more glycolytic (‘white’), tougher meat. The robustness of this
paradoxical relationship is unclear, because sophisticated
molecular tools, including viral-vector technologies, can now
be applied to force expression of specific muscle attributes in
ways not examined previously.

Significance of skeletal muscle for animal production

Skeletal muscle is essential for life. We needmuscles to breathe,
to eat and to interact with the environment. Building and
maintaining healthy muscles is needed for body heat,
metabolism and movement throughout life. Yet, in later life,
muscles of all mammals begin to shrink andweaken, threatening
independence, productivity and quality of life. Skeletalmuscle is
also food,with a considerable proportionof theglobal population
relying on muscle from livestock and fish for the best sources of
high-quality proteins (Lynch and Koopman 2018).
Understanding how muscles develop, grow and adapt is
important not just for enhancing athletic performance or
improving safety and productivity in the work place, but for
livestock and aquaculture production, including optimising
farming practices, nutritional feeding strategies, and meat
production and quality for lucrative domestic and export
markets (Lee et al. 2010; Lefaucheur 2010; Astruc 2014;
Listrat et al. 2016; Parr et al. 2016).

Skeletal muscle fibres

Muscle comprises functionally diverse fibre types ranging in
size, metabolism and contractility (Burke et al. 1973; Larsson
et al. 1991; Schiaffino 2007; Schiaffino and Reggiani 2011;
Blaauw et al. 2013).Muscle phenotype is largely defined byfibre
number,fibre cross-sectional area,muscle architecture andfibre-
type distribution. On the basis of myosin heavy-chain protein
isoforms, which largely dictate the rate of force development,
velocity of shortening and rate of cross-bridge cycling,
mammalian muscle fibres are broadly classified as slow-
twitch (Type I) or fast-twitch (Types IIa, IId/x and IIb). While
Type I and Type IIa fibres primarily generate ATP via oxidative
metabolism and Type IId/x and IIb fibres generate energymostly
through glycolysis (Schiaffino 2007; Murgia et al. 2015), fibre
classification based onmyosin heavy-chain isoformcomposition
does not necessarily correlate well with oxidative capacity, and
variation among species and even among mammals (e.g. the
absence of Type IIb fibres in humans compared with mice and
rats) should also be considered (Gouspillou et al. 2014).
However, on the basis of an extensive body of literature
examining relationships between muscle fibre cross-sectional
area (fibre size) and oxidative capacity, it is generally accepted
that larger fibres have relatively lower oxidative capacities than
do smaller fibres, regardless of the type. In fact, both Type I and
Type IIa fibres have a large oxidative capacity and are usually
smaller than Type IIb and Type IIx fibres (van Wessel et al.
2010).

Signalling pathways regulating muscle adaptation
and plasticity

Muscle fibres are highly plastic and capable of altering their
properties in response to contractile demand or other
perturbations of signalling pathways that regulate isoform
composition. The cellular, biochemical and molecular
processes governing fibre identity and regulating adaptation
and plasticity, are becoming clearer. The slow-muscle fibre
phenotype is controlled by biochemical signalling related to
protein kinase C, calcineurin–nuclear factor of activated
T-cells (NFAT), AMP-activated protein kinase, estrogen-
related receptor gamma, sex-determining region Y-box 6, and
peroxisome proliferator-activated receptor gamma co-activator
1-a (Tong et al. 2009; Ljubicic et al. 2014; Omairi et al. 2016).
Calcineurin–NFAT (nuclear factor of activated T-cells)
signalling plays an important role in regulating fast-to-slow
muscle phenotypic adaptations (Chin et al. 1998). Calcineurin
(gene name: Ppp3ca) is a Ca2+/calmodulin-dependent
phosphatase that dephosphorylates NFAT, resulting in its
nuclear translocation and binding to specific sequences on the
promoters of target genes that induce slow oxidative muscle fibre
programming (Olson andWilliams 2000; Dunn et al. 2001; Allen
and Leinwand 2002; Parsons et al. 2003; Stupka et al. 2006,
2007, 2008). As a key master regulator of slow-muscle
programming and muscle oxidative capacity, manipulating
calcineurin expression is one approach to interrogate the
muscle paradox and selectively alter muscle fibre composition.
Each of these master regulators of muscle phenotype could be
similarly explored for their ability to selectively alter muscle
phenotype.

Muscle fibre phenotype
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Fig. 1. ‘Nature’s paradox’ for skeletalmuscle (solid line) suggests thatfibre
size and oxidative capacity are mutually exclusive, thus limiting adaptation.
The fibres with high oxidative capacity tend to be small and slow contracting
(inset, left panel). Highly glycolytic (pale) muscle fibres tend to be large and
fast contracting (inset, right panel). Overcoming the paradox (dashed line) to
create larger, more oxidative muscle fibres through genetic, nutritional or
pharmacological interventions could enhance muscle attributes (such as
fibre size and muscle phenotype), with important implications for animal
production in livestock (e.g. beef, lamb, pork and poultry) and aquaculture
(e.g. salmon) industries. Targeting and manipulating specific muscle
attributes in this context could ultimately affect parameters such as feed
efficiency and yield, as well as product (flesh) quality, colour and texture,
relevant to domestic and export market preferences.
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Fast, glycolytic muscles are regulated by activation of Akt
signalling, and removing inhibition of Akt signalling through
myostatin potently induces formation of glycolytic fibres
(Trendelenburg et al. 2009). Myostatin, a negative regulator
of skeletal muscle mass that inhibits muscle-cell differentiation,
requires Smad2 andSmad3 downstreamof the activin receptor II
(ActRII)/activin receptor-like kinase receptor complex; Sartori
et al. 2009). Other transforming growth-factor b (TGF-b)-like
molecules can also block differentiation, including TGF-b1,
growth-differentiation factor 11 (GDF-11), activins and bone
morphogenetic proteins 2 and 7. These signalling pathways for
muscle growth and those for muscle atrophy that ultimately
regulatemusclefibre sizehavebeendescribed indetail elsewhere
(Glass 2010; Bodine and Baehr 2014; Rom and Reznick 2016;
Winbanks et al. 2016).

Myostatin, also known as growth/differentiation factor-8
(GDF8), is a member of the TGF-b superfamily of secreted
proteins. It is highlyexpressed inmuscleandnegatively regulates
proliferation. Deletion leads to a well described hypermuscular
phenotype in mice, cattle and humans, with muscles being
glycolytic with reduced numbers of mitochondria (McPherron
and Lee 1997; McPherron et al. 1997; Schuelke et al. 2004).
Myostatin inhibitors include the myostatin propeptide, 1
follistatin and the follistatin-related gene, as well as growth
and differentiation factor-associated serum protein-1 (Hill
et al. 2003). The most potent inhibitor is follistatin and its
overexpression has powerful growth-promoting effects in
skeletal muscle (Zheng et al. 2017). Follistatin is an
endogenous ligand-binding partner for myostatin and activin
A (a growth factor implicated in reducing muscle fibre size;
Trendelenburg et al. 2009; Chen et al. 2014; Davey et al. 2016;
Winbanks et al. 2016). Myostatin antagonists are being
developed as therapies for muscle-wasting diseases such as
Duchenne muscular dystrophy (DMD) due to their strong
hypertrophic effects on skeletal muscle (Whittemore et al.
2003; Murphy et al. 2010). Strategies to engineer (and
upregulate) follistatin also have potential for these conditions,
by combining the hypertrophic actions of myostatin antagonism
with the anti-inflammatory and anti-fibrotic effects of activin A
antagonism (Rodino-Klapac et al. 2009; Iskenderian et al. 2018;
Schumann et al. 2018). Using viral vectors to force expression of
follistatin in mouse skeletal muscles can produce phenomenal
100% (and greater) increases in skeletal musclemass (Winbanks
et al. 2012; Sepulveda et al. 2015). Strategies to inhibitmyostatin
or overexpress follistatin for application to animal production
will be discussed later in this review.

Significance of the muscle paradox

The concept of the muscle paradox and its important
physiological consequences in animals have been described in
detail elsewhere (van der Laarse et al. 1998; Kinsey et al. 2007;
Jimenez et al. 2013; Omairi et al. 2016; van der Zwaard S et al.
2018). In mammals, the paradox represents a constraint on the
size at which mitochondria-rich, high O2-dependent oxidative
fibres can attain before they become anoxic or adapt to a
glycolytic phenotype, less reliant on O2. This means that a
muscle fibre can hypertrophy at the expense of its endurance
capacity (Fig. 1; van Wessel et al. 2010). Despite having an

inherent capacity to alter their attributes, the extent of change or
adaptation is influenced by the number and/or magnitude of
different perturbing stimuli, especially those affecting muscle
fibre size and muscle fibre composition. These signalling
pathways can be complementary to effect considerable change
in phenotype or they may compete or interfere with each other
to limit adaptations. An often-described example is that of
exercising humans training simultaneously for both strength
and endurance who experience less of an adaptation than if
they trained just for one outcome; this is a phenomenon called
the ‘interference effect’ or ‘concurrent training effect’ (Baar
2014; Fyfe et al. 2014; Coffey and Hawley 2017).

Typically, when muscles are loaded during resistance
training, muscle fibres hypertrophy, leading to an increase in
mass. Conversely, with endurance exercise, muscles adapt by
increasing their oxidative metabolism facilitated through
increased mitochondrial enzymes and capillary density, not
through hypertrophy. The underlying mechanisms responsible
for limiting adaptation (in either direction) in the face of
competing stimuli remain unresolved, in part because current
understanding has relied on physical activity (exercise) as the
perturbing stimulus. During exercise/physical activity, only a
small fraction of the total number of fibres within muscles are
recruited to complete specific tasks and usually for only brief
periods, such as, for example, a few seconds for maximal
sprinting or powerlifting, to a few hours with endurance
activities, such as marathon running. To properly interrogate
the limitations of muscle adaptation and plasticity requires
driving expression of key attributes using viral-vector gene-
delivery tools to maximise muscle size or oxidative capacity,
and so rigorously test hypotheses about the muscle paradox.
Viral-vector technologies that permit direct targeting of specific
growth and oxidative pathways can facilitate extremes ofmuscle
hypertrophy and adaptive potential, with superior interrogation
of the biological signalling pathways that can maximise muscle
attributes singly or in combination. Overcoming nature’s limits
on muscle attributes would have broad application to all aspects
of skeletal muscle biology, but especially to better understand
muscledevelopment andgrowth tooptimisemeatproductionand
quality, which is relevant to animal production and livestock and
aquaculture.

While viral-vector technologies provide a powerful approach
for testing the limits of skeletal muscle adaptation, relevant to
optimising muscle attributes from animal production, signalling
pathways regulating muscle size, and phenotype can also be
manipulated through nutritional and pharmacological strategies.
A brief overview of selected nutritional and drug approaches for
altering muscle attributes is provided.

Nutritional strategies to alter skeletal muscle attributes
and phenotype

The growth of animals and their body composition (muscle, fat
and bone content) can be manipulated through the energy and
protein content provided in the diet. Indeed, intensive
(ad libitum) feeding of beef cattle can improve animal growth
rates, final bodyweights and feed efficiencies compared with
their pasture-fed counterparts (Vestergaard et al. 2000a, 2000b).
Here, we focus on the fundamental principles that underpin
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skeletal muscle adaptation to changes in dietary intake and how
these principles can be applied to enhance muscle growth and
metabolism.

Protein

The most intensively studied dietary components in relation to
growth of animals are protein and total energy content that can be
metabolised (carbohydrate, lipids and protein). As amino acids
are the building blocks for producing new protein, it is not
surprising that adequate dietary protein intake is the main
driver of muscle growth. Indeed, classical studies performed
in growing pigs in the 1980s showed that at equivalent levels of
energy intake, pigs provided a diet with adequate protein
exhibited more rapid and efficient growth than did those on a
protein-deficient diet (Campbell and Dunkin 1983). A more
recent study in broiler chickens examined 14 different iso-
energetic diets with varying macro-nutrient compositions to
assess the relative importance of protein, lipid and starch on
growth performance (Liu et al. 2017). The study confirmed that
energy derived from protein was more important than non-
protein energy in terms of weight gain, and that a balance
between protein and energy supplies was required for efficient
muscle-protein deposition (Liu et al. 2017). To enhance protein
utilisation (nitrogen retention), digestion rate of different protein
sources and amino acid composition need to be considered. For
example, studies in humans have established that proteins more
rapidly digested and absorbed (i.e. whey and casein hydrolysates
compared with casein) result in enhanced amino acid delivery to
themusclewith higher rates of protein synthesis (Koopman et al.
2009; Pennings et al. 2011).

Supplementation with animal-derived protein is more
effective in stimulating protein synthesis (Tang et al. 2009)
and promoting hypertrophy in humans than is supplementation
with plant-based proteins (Wilkinson et al. 2007). Studies in pigs
have confirmed that addition of animal-derived protein enhances
performance, nutrient digestibility andgutmorphologymore than
does addition of plant-derived protein sources (Yun et al. 2005).
Interestingly, themajority of ananimal’s dietary intakeof protein/
amino acids is through intake of plant-based proteins. In contrast
to animal-based proteins, which have a well balanced amino acid
composition essential for growth and development, plant-based
proteins are nutritionally unbalanced and deficient in some
essential amino acids. Therefore, plant-based protein diets
require higher crude protein intake or supplementation with an
animal protein source (derived from meat/fish and diary
processing) or specific amino acids (Beski et al. 2015). There
are considerable advantages of reducing dietary crude protein
withsupplementationof freeaminoacids for sustainable livestock
production, including saving on protein ingredients, reducing
nitrogen excretion, feed costs and the risk of gut disorders,
without impairing growth performance compared with
traditional diets (Wang et al. 2018). Some amino acids with
beneficial effects on skeletal muscle growth will now be
discussed in detail.

Leucine

Muscle cells are highly sensitive to changes in amino acid
availability, which plays a major role in the regulation of

protein synthesis and breakdown. Amino acid abundance
results in enhanced activity of the mechanistic target of
rapamycin complex 1 (mTORC1), which is one of the key
regulators of protein turnover that drives protein synthesis and
growth (Ham et al. 2014a). Of all amino acids, the branched-
chain amino acid, leucine, is the most potent stimulator of
mTORC1 and protein synthesis in vitro and in vivo (Ham
et al. 2014a). As such, leucine has received considerable
attention as a potential pharmaconutrient to enhance growth.
Multiple studies have shown that administration of leucine or
leucine-rich supplements acutely increases protein synthesis in
mice and rats (Anthony et al. 2000), pigs (Murgas Torrazza et al.
2010), sheep (Schaefer et al. 1986) and healthy humans (Wall
et al. 2013). Interestingly, long-term, placebo-controlled,
isocaloric studies in adult humans have consistently shown no
beneficial effect of leucine supplementation on skeletal muscle
mass or function (Verhoeven et al. 2009). We have critically
evaluated the therapeutic potential of leucine to attenuate the
skeletal muscle wasting associated with ageing, cancer and
immobilisation/bed rest (Ham et al. 2014a) and highlighted
the impact of inflammation on amino acid sensing, mTOR
activation and stimulation of protein synthesis (Ham et al.
2016). Leucine, as a standalone nutritional intervention, is not
effective in preventingmuscle wasting. In contrast, some studies
in rapidly growing young pigs fed a protein-restricted diet
have shown that feeding with leucine (or its metabolite
b-hydroxymethylbutyrate) can enhance growth (Wan et al.
2016; Zheng et al. 2016). Using porcine myoblasts, in vitro
studies have suggested that leucine induces a fast-to-slow fibre-
type transition via AMP-activated protein kinase/SIRT1-
mediated (Chen et al. 2019) or FOXO1-mediated (Zhang
et al. 2019) signalling. In contrast, recent in vivo studies
demonstrated that leucine feeding in piglets suppressed
oxidative phosphorylation and fatty acid b-oxidation, with
activation of glycolysis and slow-to-fast fibre-type transition
(Fan et al. 2017). More detailed studies are needed to elucidate
the effect of leucine feedingonmusclephenotype in animals used
for meat production.

Arginine and citrulline

Citrulline is a non-proteinogenic amino acid (i.e. an amino acid
not incorporated into protein with a unique inter-organ
metabolism) and it plays a central role in the delivery of
arginine to skeletal muscle (Moinard and Cynober 2007).
Since citrulline is not metabolised in the gut, oral citrulline
administration is more efficient in increasing plasma and
muscle concentrations of arginine than is arginine feeding.
The semi-essential amino acid arginine is critically involved
in numerous physiological functions, including providing
substrate to produce creatine, urea and nitric oxide (NO). NO
is a key signalling molecule that stimulates release of growth
factors such as insulin and growth hormone and plays a role in
vasodilation (and, thus, nutrient delivery to the muscle), satellite
cell activation, myoblast fusion and overload-induced skeletal-
muscle hypertrophy (Ham et al. 2014b). Arginine availability
clearly plays a role in the regulation of protein synthesis
and skeletal muscle mass in both NO-dependent and
NO-independent ways (Ham et al. 2014b).
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Citrulline supplementation reduces muscle wasting in
conditions of arginine deficiency. In rats, massive intestinal
resection results in skeletal muscle arginine deficiency and
muscle atrophy, while restoration of skeletal muscle arginine
pools with citrulline improves muscle protein metabolism and
attenuates muscle wasting (Osowska et al. 2004). We have
demonstrated a direct role for arginine in the protection of
skeletal muscle cells from cachectic stimuli in C2C12
myotubes in vitro (Ham et al. 2014a). Arginine reduced
muscle wasting in a dose-dependent manner and modulated
protein synthesis rates in a mTORC1-dependent manner (Ham
et al. 2014a). We have also demonstrated a novel direct
protective effect of L-citrulline on protein metabolism and
skeletal muscle cell size that is not mediated by signalling
through mTORC1 (Ham et al. 2015a). Interestingly, studies
performed in vivo have demonstrated that citrulline treatment
has no effect on therapeutically relevant outcomemeasures such
as skeletal muscle mass and peak muscle force after 14 days of
hind-limb immobilisation (Ham et al. 2015b). The effect of
citrulline feeding on muscle growth in pigs, sheep and beef
cattle has not been investigated in detail. In contrast, many
studies have examined the effect of arginine supplementation
in pigs and, although capable of improving some aspects of meat
quality, arginine does not affect growth performance and carcass
yield in growing–finishing pigs (Madeira et al. 2014, 2015, 2016;
Hu et al. 2017).

Glycine and related compounds

Glycine is one of the non-essential amino acids often considered
to be biologically neutral. However, studies have indicated that
glycine exerts a range of physiological effects in numerous
tissues and cell types in vitro and in vivo (Koopman et al.
2017). Glycine is a substrate for the production of glutathione,
heme and creatine and, therefore, plays a role in overall
antioxidant defence and metabolism. Glycine administration
also modulates homeostasis by activating glycine-gated
chloride channels in inflammatory cells, thereby effectively
reducing [Ca2+]i cytokine production, and whole-body
(systemic) inflammation in several models (Zhong et al.
2003). Because inflammation plays a key role in the aetiology
of many muscle-wasting conditions, we have tested the
hypothesis that glycine supplementation represents a simple,
safe and promising nutritional intervention for tackling skeletal-
musclewasting inmanydiseases and conditions.Wehave shown
that glycine protects from wasting in mouse models of cancer
cachexia (Ham et al. 2014c) and enhances the anabolic response
to leucine during inflammatory conditions (Ham et al. 2016).Our
observations are consistent with other studies, showing that
glycine supplementation attenuated the inflammatory response
to lipopolysaccharide in broiler chicks and enhanced average
daily gains in bodyweight (Takahashi et al. 2008). A glycine-
related compound that has received considerable interest
is guadinoacetic acid (GAA), a precursor of creatine. GAA
is synthesised from arginine and glycine, and GAA
supplementation improves growth performance (DeGroot
et al. 2019), breast meat yield (Córdova-Noboa et al. 2018a)
and reduces the severity of wooden breast myopathy in broilers
(Córdova-Noboa et al. 2018b). An amino acid such as glycine or

its derivatives that modulate inflammation and metabolism will
be valuable additions to nutritional interventions for livestock
and aquaculture.

Choline

Choline is an essential water-soluble nutrient with multiple
biological roles, including countering inflammation and
oxidative stress, promoting neurotransmission and membrane
composition and enhancing lipogenesis. One of the ways in
which choline, and its derivative betaine, can modulate
muscle homeostasis is by serving as a methionine precursor
(viaone-carbonmetabolism) and in the regulationofmethylation
of DNA, histones and other proteins (Abbasi et al. 2017).

Choline deficiency is implicated in neurological disorders,
fatty liver disease, atherosclerosis and muscle wasting (Zeisel
et al. 1991). Choline supplementation can combat deficiencies
and complications (Fischer et al. 2007). We recently tested the
hypothesis that choline supplementation would be beneficial in
mdx dystrophic mice, the most widely used murine model of
DMD, which is the most severe of the muscular dystrophies
(Alves et al. 2019). Choline administration attenuated the
dystrophic pathology, with reductions in the expression of
inflammatory markers, macrophages and collagen infiltration
(Alves et al. 2019). Choline supplementation in broiler chickens
during the grower and finisher period effectively improved the
feed conversion ratio, carcass yield and moisture content of leg
muscle (Jahanian and Ashnagar 2018). Similarly, betaine
feeding improved growth performance in broiler chickens
(Chen et al. 2018; Shakeri et al. 2018) and was effective for
the resynthesis of methionine to sustain protein synthesis in pigs
fed a methionine-restricted diet (McBreairty et al. 2016).

Pharmacological strategies to alter muscle attributes
and phenotype

Because muscle mass relies on myoblast proliferation during
prenatal (or prehatch) stages and fibre hypertrophy through
protein synthesis and nuclei donation by satellite cells after
birth (or hatch), pharmacological approaches to optimise
cellular and molecular mechanisms of myogenesis and muscle
development are important (Chen and Lee 2016). Technologies
to control fat and muscle composition in livestock were
reviewed by Sillence (2004) who provided a comprehensive
evaluation of pharmacological strategies, including anabolic
steroids, corticosteroid suppressors, b-adrenoceptor agonists
(b-agonists), growth hormone (GH), insulin-like growth
factor-I (IGF-I), adipokines, myostatin inhibition and selective
androgen receptor modulators (Cesbron et al. 2017). Various
combinations of these approaches can also be employed to
promote and sustain muscle growth and alter lean meat-yield
production, and marbling (Boles et al. 2009).

Hormonal growth-promoting agents (‘promoters’ or
‘promotants’) have been used for promoting muscle growth in
farm animals (including cattle and pigs) and have been reported
as beneficial for production efficiency, profit and reduced
environmental effects, yet their effects on meat quality
(particularly on measures of toughness) have yet to be
resolved (Lean et al. 2018). The purpose of hormonal growth
promotants, as described (somewhat cheekily) by Stephany
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(2010). is ‘to obtainmore ediblemusclemeat for lessmoney’ but
essentially to shift nutrient use towards carcass lean tissue
deposition at the expense of adipose tissue (Johnson and
Chung 2007). However, different countries around the world
have enacted total bans or restricted the use of specific growth-
promoting/growth-partitioning drugs because of their potential
toxicity and carcinogenic properties (Leporati et al. 2014). Other
countries still allow their use in animal production, reflecting
changes in consumer preferences and international politics
(Higgins 2004; Stephany 2010; Bonny et al. 2018; Farmer
and Farrell 2018).

Testosterone (anabolic steroids) and growth
hormone (GH)

The ability of the sex steroids testosterone, oestrogen and
progesterone and their synthetic derivatives (nandrolone,
trenbolone, melenogestrol and hexoestrol) to increase lean
tissue growth in ruminants is undisputed (Sillence 2004;
Dayton and White 2014). Although their use remains
controversial, anabolic implants (containing estrogenic and
trenbolone acetate combinations) are used routinely in some
countries during the finishing phase of beef production to
improve animal performance and feed efficiency (Reinhardt
2007; Duckett and Pratt 2014), despite implants having
potentially adverse effects on carcass quality and eating
quality, depending on dose and frequency (Garmyn and
Miller 2014). Similarly, GH and recombinant GH can change
carcass composition, especially in pigs, but only to a mild extent
in cattle (Sillence 2004). Steroid-based growth promoters
generally elevate local and circulating IGF-I concentrations
through activation of steroid receptors and downstream
signalling pathways, which influence proliferation and
myogenic differentiation of muscle stem cells (satellite cells),
increasing protein synthesis, and reducing protein degradation,
with net protein accretion and muscle hypertrophy (Du 2014).
Other studies have argued that GH stimulates muscle growth in
cattle, in part, by stimulating protein synthesis inmuscle through
a GH receptor-mediated, IGF-I-independent mechanism, with
liver-derived circulating IGF-I being the major mechanism
mediating the growth-stimulatory effect of GH on muscle in
cattle and other domestic animals (Jiang and Ge 2014).

b-adrenoceptor agonists
Although traditionally used for treating bronchospasm in
animals and humans, it became apparent that stimulation of
the b-adrenergic system with b-adrenoceptor agonists
(particularly b2-agonists) had the ability to increase skeletal-
muscle mass and decrease body fat. These so-called
‘repartitioning effects’ proved desirable for the livestock
industry with the intention of improving feed efficiency and
meat quality (Lynch and Ryall 2008). Although protein turnover
rates can be augmented by b-agonists in humans (Hostrup et al.
2018), their muscle anabolic effects appear to be much less
pronounced than those observed in livestock. Studies on cattle,
sheep and pigs have shown that the tissue responsiveness to
b-agonists varies from species to species, and even among
different tissues within a species, primarily because of
differences in the density of b-receptor subtypes (Lynch and

Ryall 2008). Many studies have examined the use of b-agonists
in livestock, especially with respect to their potential to improve
meat quantity and, to a lesser extent, quality, because they can
increase toughness in beef loin (Sillence 2004; Dunshea et al.
2005). The anabolic effects of b-agonists attenuate as
b-adrenoceptors in skeletal muscle downregulate, and, in
some cases, sudden withdrawal (of some b-agonists) can
result in a marked catabolic response (Sillence 2004). These
factors influence how b-agonists might be used commercially to
maximise muscle growth but also limit tissue residues of these
compounds that may produce off-target (adrenaline-like) effects
in consumers.

Twob-adrenergic agonists are approved foruse in cattle fed in
confinement for slaughter in theUnitedStates, namely, zilpaterol
hydrochloride and ractopamine hydrochloride, with the purpose
of increasing the rate of gain, improving feed efficiency and
increasing carcass leanness (Delmore et al. 2010; Brown et al.
2014; Martin et al. 2014). Maximum residue limits for
ractopamine determined by the Joint FAO/WHO Expert
Committee on Food Additives (JECFA) were adopted by the
Codex Alimentarius Commission (Codex), although no such
limits have been determined for zilpaterol (Centner et al. 2014).
Many countries disagree with the Codex standards and maintain
a policy of restricting or banning meat products containing
b-agonists (Centner et al. 2014), whereas other countries have
fewer concerns. Methods are being developed to manage the
safety of importedmeat products fromcountrieswhere zilpaterol
use is still permitted, to prevent b-agonist poisoning due to
secondary contamination (Sung et al. 2015). The consumption
of contaminated meat products can lead to potentially serious
side effects, including palpitations, peripheral vasodilatation,
headache and cardiovascular complications, as well as tremor
and muscle cramps (Lynch 2002).

On the basis of their growth-promoting effects on skeletal
muscle, we have examined the therapeutic potential of several
b-agonists (fenoterol, clenbuterol, formoterol) for muscle-
wasting conditions, in animal (mouse, rat) models of muscular
dystrophies and sarcopenia (Beitzel et al. 2007; Lynch andRyall
2008; Ryall and Lynch 2008; Koopman et al. 2010). From a
‘muscle paradox’ perspective and attempting to elicit maximal
muscle hypertrophy, we have found that these b-agonists
typically cause a (dose-dependent) 10–20% increase in
muscle mass within 2–4 weeks, after which the muscle-mass
response reaches a plateau due to receptor downregulation and
desensitisation. Because the heart also contains b-adrenoceptors
(mainly b1-adrenoceptors but also some b2-adrenoceptors),
b-agonist administration even with highly selective b2-
agonists can trigger off-target complications such as cardiac
hypertrophy (Ryall and Lynch 2008). From a therapeutic
perspective, obviating the deleterious cardiovascular side
effects of b-agonists remains an important challenge (Ryall
and Lynch 2008).

Therefore, we investigated whether b-adrenoceptor-
mediated signalling could be modulated in skeletal muscle via
gene delivery to the target tissue, thus avoiding risks associated
with b-agonists. In mice, intramuscular administration of a
recombinant adeno-associated virus-based vector expressing
the b2-adrenoceptor increased muscle mass by more than 20%
within 4 weeks, a hypertrophic response comparable to that of
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administration of formoterol for 4 weeks. Recombinant adeno-
associated virus-based vectors are emerging tools for therapeutic
gene delivery because of their capacity for efficacious and
targeted delivery of transgenes to mammalian skeletal
muscles (Hagg et al. 2016). The study showed that gene
therapy-based interventions targeting the b2-adrenoceptor
pathway could promote skeletal muscle hypertrophy
independent of ligand administration, highlighting how these
methods could be utilised for altering muscle mass, being
relevant to treating muscle-wasting conditions, but also for
livestock production.

Myostatin and follistatin

As described in the introductory sections of this review (see
Signalling pathways regulating muscle adaptation and
plasticity), b-agonist administration can increase skeletal-
muscle mass in mammals, but the magnitude of hypertrophy
is much less than what can be elicited with manipulation of the
TGF-b superfamily signalling pathway, such as myostatin
inhibition or increasing follistatin expression. Myostatin
(GDF-8), a member of the TGF-b superfamily, is a negative
regulator of myogenesis and suppresses myoblast proliferation
and myogenic differentiation. Several animals, including cattle,
sheep, dogs and humans, display the ‘double-muscled’
phenotype due to mutations in the myostatin gene and
understanding of different null alleles and polymorphisms in
the myostatin gene could be applied to improving meat
production in livestock animals (Aiello et al. 2018).
Myostatin positively regulates slow but negatively regulates
fast myosin, such that in transgenic myostatin null mice, there
is a shift towards faster isoforms (Wang et al. 2012). Even
heterozygous myostatin-knockout pigs exhibit a
disproportionate increase in muscle mass and more fast
glycolyticmusclefibres than dowild type pigs (Xing et al. 2017).

Chen and Lee (2016) reviewed inhibitors of myostatin as
methods of enhancing muscle growth and development for
animal production, indicating that there are currently no
commercial myostatin inhibitors for agriculture or biomedical
purposes because safe and effective options are yet to be
identified. They suggested that further investigation of
myostatin inhibitors and administration strategies may
revolutionise animal production and the medical field. For
example, because myostatin exerts its actions on skeletal
muscle via interaction with ActRIIB, inhibition of this
receptor is an attractive therapeutic avenue for attenuating
muscle wasting (Swiderski and Lynch 2015) but also for
animal production. Blocking myostatin signalling through
genetic and pharmacological approaches induces skeletal-
muscle hypertrophy, whereas overexpression or systemic
administration causes muscle atrophy (Lee et al. 2012).
Myostatin signalling can be disrupted by neutralising
antibodies to myostatin (Whittemore et al. 2003; Murphy
et al. 2010), a modified myostatin propeptide to block
myostatin (Bogdanovich et al. 2005), and a soluble ActRIIB
receptor Fc fusion protein (Lee et al. 2005; Tsuchida 2008; Zhou
et al. 2010; Attie et al. 2013). With respect to therapeutic
applications, it should be noted that a randomised, double-
blind, placebo-controlled, ascending-dose trial of the fusion

protein myostatin inhibitor, ACE-031, in DMD patients,
although not associated with serious or severe adverse events,
was stopped after the second dosing regimen due to potential
safety concerns of epistaxis (nosebleeds) and telangiectasias
(‘spider veins’; Campbell et al. 2017).

Of most relevance to interrogating the ‘muscle paradox’
perspective, we undertook a series of investigations in mice
on the effect of a myostatin-inhibiting antibody (PF-354) on
skeletal muscle wasting, in settings of sarcopenia, unloading,
muscular dystrophy and cancer cachexia (Murphy et al. 2011).
Myostatin inhibition not only attenuatedmuscle atrophy in these
wasting settings, but in otherwise healthy mice, it increased
muscle fibre cross-sectional area by 12% and enhanced
maximum force (function) of mouse tibialis anterior muscles
by 35% (Murphy et al. 2010). Compared with transgenic
myostatin null mice that exhibit a shift in muscle phenotype
tohavinga largerproportionof fastType II (glycolytic)fibres and
a smaller proportion of slow Type I (oxidative) fibres than do
wild-typemice (Girgenrath et al. 2005), we found that myostatin
antibody (PF-354) treatment increased the proportion of type IIa
(fast oxidative) fibres by 114% and enhanced the activity of
oxidative enzymes (e.g. succinate dehydrogenase) by 39%
(Murphy et al. 2010). Therefore, the effects of myostatin
inhibition vary depending on the mode of intervention,
indicating that it is possible (at least through an inhibitory
antibody) to produce larger, more oxidative skeletal muscles;
these findings were not predicted on the basis of the muscle
paradox. Producing larger, more oxidative muscle fibres is
favourable for animal production, ultimately producing
greater yields and potentially superior flesh qualities.

Follistatin is a potent myostatin antagonist that acts via a
pathway independent of the myostatin signalling cascade by
inhibiting binding of myostatin to the ActRIIB. Therefore,
administration of follistatin can enhance skeletal muscle mass
with fewer off-target effects compared with administration of
other myostatin inhibitors trialled previously (Swiderski and
Lynch 2015; Hardee and Lynch 2019). Mice genetically
engineered to overexpress follistatin, specifically in skeletal
muscle, had at least twice the amount of muscle mass of
control mice (Chang et al. 2017) and viral vector-mediated
expression of follistatin in mouse skeletal muscles produced
similar (or even greater) increases in muscle mass (Winbanks
et al. 2012; Sepulveda et al. 2015;Davey et al. 2016). Thismakes
follistatin attractive for studying the relationship betweenmuscle
growth andmuscle phenotype, especially for exploring the limits
of muscle fibre size.

Less is known about the role of follistatin in skeletal muscle
development of livestock, but in pigs, muscle-specific follistatin
overexpression enhanced skeletal muscle growth, highlighting
its potential for increasing muscle mass in pigs and other
livestock species (Chang et al. 2017). Transgenic rainbow
trout overexpressing follistatin exhibited increased total
muscle surface area with epaxial and hypaxial muscling
similar to that observed in double-muscled cattle and
myostatin null mice, being attributed to inhibition of
myostatin and possibly other growth factors (Medeiros et al.
2009). The hypaxial muscling generated a phenotype with well
developed abdominal and intercostal muscles (as in athletic
humans) and was dubbed ‘six pack’! (Medeiros et al. 2009).
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With respect to understanding the muscle paradox and
limitations on muscle fibre size, the increased muscling in the
transgenic rainbow troutwas attributed to hyperplasia,withmore
fibres per unit area and increases in the percentage of smaller
fibres and the number of total fibres (Medeiros et al. 2009).

In addition to systemic or intramuscular adeno-associated
virus follistatin delivery, nanoparticle-mediated delivery of
follistatin mRNA to the liver after subcutaneous
administration (Schumann et al. 2018) has emerged as an
effective way to increase muscle mass, with potential
relevance to animal production. After subcutaneous injection
of mRNA-loaded nanoparticles, the mRNA accumulates and
internalises in the liver, where the hepatic cellular machinery
produces follistatin. Serum concentrations of follistatin
remained elevated for 72 h after injection and reduced
concentrations of activin A and myostatin, with repeated
injections over 8 weeks being required to increase lean
muscle mass by 10% compared with controls (Schumann
et al. 2018). The nanoparticle delivery of follistatin, while not
as efficacious for increasing muscle mass as a single adeno-
associated virus injection, provides a way to transiently
manipulate follistatin concentration that may prove desirable
for animal-production applications.

Conclusions

The muscle paradox suggests fibre size and oxidative capacity
are mutually exclusive, such that muscle fibres can hypertrophy
at the expense of their endurance capacity.While skeletalmuscle
adaptations to perturbing stimuli generally obey this
relationship, there are some situations (including genetic
manipulation and pharmacological interventions) where this
limitation can be overcome to produce larger, more oxidative
muscle fibres.

On the basis of the evidence provided herein, extremes of
muscle hypertrophy can be achieved, especially through
manipulation of TGF-b signalling, including strategies that
decrease myostatin and increase follistatin. Genetic selection
of myostatin increases muscle fibre size but shifts muscle
phenotype to being more glycolytic, which are attributes
associated with tougher flesh and less desirable meat quality.
Antibody-directed suppression of myostatin has, in some
mammals (such as mice), caused muscle fibre hypertrophy
and a concomitant increase in the overall muscle oxidative
capacity, attributes that would not be predicted based on the
muscle paradox. Viral vector methods and nanoparticle-
mediated delivery of mRNA are powerful tools for
manipulating biochemical signalling to direct muscle growth
and phenotype. Combinatorial approaches may have potentially
greater efficacy in animal production for selectively altering
muscle attributes, ultimately to produce larger, more oxidative
muscles with more desirable flesh qualities. Such strategies are
theoretically applicable to farm animals from chickens to free
range ruminants, recognising, of course, that safety concerns
would need to be interrogated rigorously for the health and safety
of both the animals being farmed and the consumers eating the
meat products. This is especially relevant to some societal views
and restrictions on the use of drugs, hormones or engineering
methods to alter animal growth trajectories and flesh quality.

The capacity to overcome the paradox to enhance specific
muscle attributes has important implications for agriculture and
aquaculture; for ageing, occupational/work physiology, and
sports performance; for the development of ‘laboratory meat’
or ‘cleanmeat’ and other synthetic foods; and for the engineering
of bioartificial muscles and tissues with attributes that confer
functionality and biological purpose.
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