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Abstract: We review the theory of shock drift acceleration, developing the theory in detail for gyrophase-
averaged particles. It is shown how both the upstream and downstream velocity spaces separate into different
regions according to the interaction of the particles with the shock (reflection, transmission, head-on,
overtaking). The effects of the cross-shock electric field and of the magnetic overshoot are discussed. The
effectiveness of acceleration is estimated for Maxwellian and power law distributions. The condition for
a beam instability to be generated by reflected particles is determined and found to be independent of the
distribution function for isotropic inflowing electrons.

Keywords: acceleration of particles — shocks

1 Introduction

Charged test particles which encounter a compressive,
collisionless shock can be accelerated via a process known
as ‘shock drift acceleration’. The acceleration occurs
because the particle’s orbit in the electric and magnetic
fields at the shock results in an overall drift (after averaging
over gyromotion) which converts electric potential energy
to kinetic energy (e.g. Sonnerup 1969; Terasawa 1979;
Toptyghin 1980, 1985; Pesses 1981; Pesses, Decker, &
Armstrong 1982; Drury 1983; Armstrong, Pesses, &
Decker 1985; Decker 1988). The earlier discussions of
shock drift acceleration emphasised acceleration of ions,
whose gyroradii are large compared with the thickness
of the collisionless shock. The analogous acceleration of
electrons, whose gyroradii are small compared with the
thickness of the collisionless shock, is sometimes called
‘mirror reflection’.We ignore the distinction here and refer
to both cases as shock drift acceleration. The acceleration
is most effective at perpendicular and quasi-perpendicular
shocks, and is absent in the limit of a parallel shock.
(‘Perpendicular’ and ‘parallel’ refer to the orientation of
the magnetic field upstream to the normal to the shock
front.) The energy increase is greatest for particles which
are reflected, and a fractionally large energy increase is
restricted to a narrow range of initial conditions. Particles
which are transmitted through the shock can also gain
energy.

Shock drift acceleration of electrons is known to occur
at bow shocks and interplanetary shocks, which can be
studied in situ using spacecraft with instruments that can
measure the field structures, wave fields, and the parti-
cle distributions (e.g. Armstrong & Krimigis 1976; Potter
1981; Sarris & Krimigis 1985; Lopate 1989). A character-
istic feature of such accelerated electrons is a beam-like
structure, which involves localisation in velocity space
not only in the beam direction, but also in beam speed, with
a gap between the speeds of thermal electrons and the
beam particles. The beams are formed by a combination

of shock drift acceleration and a time-of-flight effect, asso-
ciated with the reflected particles being swept back into
the shock: slower particles are swept back after propa-
gating a shorter distance than faster particles (Filbert &
Kellogg 1979; Cairns 1986, 1987; Fitzenreiter, Scudder, &
Klimas 1990). Shock drift acceleration of electrons may
also be responsible for the acceleration of electrons which
produce Type II solar radio bursts and the associated her-
ringbone structures (Holman & Pesses 1983; Leroy &
Mangeney 1984; Wu 1984; Street, Ball, & Melrose 1994;
Krauss-Varban & Wu 1989) although a detailed model has
yet to be developed. A more problematic possibility is that
shock drift acceleration may operate as a pre-acceleration
mechanism for diffusive acceleration, boosting electrons
to the threshold energies thought to be required for res-
onant scattering to be effective (Zank & Gaisser 1992;
Melrose 1994).

In Section 2 we discuss specific frames of reference
which are useful for calculations involving shock drift
acceleration. A useful dynamical invariant is discussed
in Section 3 and a justification of the associated con-
servation law is presented. In Section 4 we discuss the
conditions which determine whether particles incident on
a shock of zero thickness are transmitted through the shock
or reflected from it. The maximum energy experienced
by particles which encounter a zero-thickness shock is
presented in Section 5. In Section 6 the effect of struc-
ture within the shock front is discussed, with particular
attention on the effects of a cross-shock electric potential
difference.

2 Shock Frames

A shock frame is a frame of reference in which the shock is
at rest. In the ‘normal incidence frame’ (NIF), also known
as the ‘shock normal frame’, the fluid in the ‘upstream’
region (which has yet to encounter the shock) moves at
velocity u1 along the normal to the shock front as shown
in the left panel of Figure 1. We use the subscripts 1 and 2
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Figure 1 Left: The normal incidence frame, in which the shock is at rest and the upstream (unshocked) fluid flows toward the shock along
the shock normal. Right: The de Hoffmann–Teller frame, in which the fluid velocities are parallel to the magnetic fields on either side of the
shock.

to denote parameters upstream and downstream of the
shock respectively. In general the upstream magnetic field
B1 is at an angle ψ1 to the shock normal, the downstream
field B2 is at an angle ψ2, and the fluid flow is deflected at
the shock and has a velocity u2 downstream of the shock.

It is useful to categorise shocks according to the speed
(in the plane of the shock) of the point of intersection
between a particular magnetic field line and the shock
front. A shock is ‘subluminal’ if this speed is less than c,
and ‘superluminal’ if it is greater than c.

If the shock is subluminal it is possible to make a
Lorentz transformation to a frame in which this point
of intersection is at rest, shown in the right panel of
Figure 1. The existence of this frame was first pointed out
by de Hoffmann & Teller (1950), and so it is often called
the de Hoffmann–Teller frame (dHTF). We use primes to
denote quantities in the dHTF. In the dHTF the fluid veloc-
ity u′ is parallel to the field lines on both sides of the shock.
If this were not so the plasma motion perpendicular to the
magnetic field would imply a motion of the magnetic field
at the shock front (since a highly conducting plasma drags
the field lines with it), contrary to the assumed properties
of the frame. If the shock front is a simple discontinuity in
the plasma properties and has negligible thickness, then
since u ‖ B and E′ = −u′ × B′, there is no electric field in
the dHTF. In the absence of an electric field, the energy of
a particle — and hence the magnitude of its momentum
— is conserved regardless of whether it crosses the shock
or is reflected from it.

If the shock is superluminal it is possible to make a
Lorentz transformation to a frame in which the shock
is strictly perpendicular, i.e. ψ1 =π/2. In such a frame
the field lines convect perpendicularly across the shock,
and the particles — which are tied to the field lines —
therefore cannot be reflected. The electric field implied
by E = −u × B is normal to the magnetic field, so that the
parallel momentum is unchanged as particles cross the
shock: p‖1 =p‖2.

The thickness of a collisionless shock is comparable
to the gyroradius of the bulk of the ions in the plasma.
Energetic ions have larger gyroradii and see the shock
essentially as a simple discontinuity, but the smaller gyro-
radii of electrons means that they are sensitive to field
structure within the shock itself. In Sections 4 and 5 we
treat the shock as a simple discontinuity and ignore the
effects of field structures within the shock. In Section 6
we discuss the effects of two such features, the cross shock
electric potential and the magnetic overshoot.

3 A Conservation Law

Analytical treatments of particle encounters with a shock
front follow from the fact that the quantity p2 sin2 α/B

is essentially unchanged by the encounter, where p is the
particle momentum, B is the magnetic field, and α is the
pitch angle — the angle between p and B. The conserva-
tion of p2 sin2 α/B is equivalent to the conservation of the
first adiabatic invariant, but the result has quite a different
justification in this context where it applies only after aver-
aging over gyrophase and was originally identified from
numerical orbit calculations (e.g. Pesses 1981). A theoret-
ical justification for the conservation law at a subluminal
shock may be expressed in terms of Liouville’s theorem
(Drury 1983).

Conservation of an infinitesimal extension in phase
space in the dHTF implies

d3p′
1 d

3x′
1 = d3p′

2 d
3x′

2. (1)

Let the shock normal be along the x axis, so that the sur-
face areasdy1 dz1 = dy2 dz2 are identically equal.Writing
d3p′

1,2 = p′2
1,2 dp

′
1,2 dcosα′

1,2 dφ
′
1,2, with p′

1 =p′
2 = p′

and φ′ the gyrophase, (1) reduces to dcosα′
1 dφ

′
1 dx1 =

dcosα′
2 dφ

′
2 dx2. The magnetic field is at an angle ψ1,2 to

the shock normal, cf. Figure 1, so the velocity component
along the x-axis implies dx1,2 = v′ cosα′

1,2 cosψ1,2 dt .
Finally, the component of the magnetic field along
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the shock normal is equal on either side of the shock:
B2 cosψ2 =B1 cosψ1. Hence (1) reduces to

cosα′
1 dcosα′

1 dφ
′
1

B1
= cosα′

2 dcosα′
2 dφ2

B2
. (2)

Assuming that the particle distribution is independent
of gyrophase, one may integrate over gyrophase using∫
dφ′

1,2 = 2π . Then (2) integrates to (cos2 α′ + constant)/
B, having the same value on either side of the shock. The
constant of integration can be evaluated by noting that a
particle with zero pitch angle on one side of the shock
has zero pitch angle on the other side of the shock, that is,
α′

1 = 0 ⇒α′
2 = 0. It follows that sin2 α′

1/B1 = sin2 α′
2/B2,

which establishes the result for subluminal shocks.
In the superluminal case one may choose a frame in

which the shock is strictly perpendicular and no particle
can be reflected. The volume elements are related by the
compression ratio, r , of the shock so that d3x1 = r d3x2,
as are the magnetic fields related by B2 = rB1. Writing
d3p1,2 =p⊥1,2 dp⊥1,2 dp‖1,2 dφ1,2, and assuming that the
distribution is independent of gyrophase, (1) reduces to
p⊥2 dp⊥2 = rp⊥1 dp⊥1, which with r =B2/B1 integrates
to give p2⊥2/B2 =p2⊥1/B1, establishing the conservation
law for the superluminal case. In deriving this result we
assume that the electric field is normal to the shock and to
the magnetic field, so that one has dp‖1 = dp‖2.

For the remainder of this work we restrict our atten-
tion to subluminal shocks, and generally assume that the
transformation from the NIF to the dHTF is nonrelativistic.

4 Reflection or Transmission

A single particle that encounters a subluminal shock may
either cross it or be reflected, as shown in Figure 2, depend-
ing on its pitch angle. The treatment of the encounter
is facilitated by making a Lorentz transformation to the
dHTF and then using the conservation of p2 sin2 α/B.
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Figure 2 A schematic charged particle orbit as it (a) crosses or
(b) is reflected at a shock whose thickness is much less than the
particle gyroradius. The increase in magnetic field across the shock
means that the gyroradius is smaller in the downstream region than
on the upstream side. The result is a particle drift along the shock
that is analogous to the drift caused by a gradient in magnetic field.

When the transformation between the NIF and the dHTF
is nonrelativistic the magnetic fields in the NIF and the
dHTF are approximately the same, as are the angles ψ .
We consider only this case below, and therefore drop the
primes from these quantities.

The condition for particles to be reflected at a simple
shock of zero thickness follows quite straightforwardly
(e.g. Toptyghin 1980, 1985). Since there is no electric field
in the dHTF, and since stationary magnetic fields do no
work, p′

2 =p′
1. Together with the result

p′2
2 sin2 α′

2

B2
= p′2

1 sin2 α′
1

B1
(3)

this implies sin2 α′
2 = (B2/B1)sin2α′

1. For a compressive
shock, B2 >B1. It follows that if a particle with a pitch
angle in the upstream region satisfying sin2 α′

1 >B1/B2

were transmitted through the shock, it would have a pitch
angle in the downstream region such that sin2 α′

2 > 1. This
is of course impossible, and so such particles must be
reflected rather than transmitted. Hence the condition for
reflection is

α′
1 > αc where sin2 αc = B1/B2. (4)

The velocity difference between the NIF and the dHTF
is in the plane of the shock and is such that u′

1, with
components u′

1 sin ψ1 along the face of the shock and
u′

1 cosψ1 normal to the shock, is transformed into u1,
which is normal to the shock. Thus u1 = u′

1 cosψ1, and
in the nonrelativistic case the transformation velocity is
u0 = u′

1 sin ψ1. Together these imply u0 = u1 tan ψ1 (e.g.
Webb, Axford, & Terasawa 1983; Kirk & Heavens 1989).

For a shock which is close to perpendicular with
ψ1 ∼ 90◦, the pitch angles in the upstream plasma, in the
dHTF (α′) and in the NIF (α), are related by

p′ cosα′ = p cosα + mu0, p′ sin α′ = p sin α, (5)

and these imply

cosα′ = cosα + u1 tan ψ1/v[
1 + 2u1 tan ψ1

v
cosα +

(
u1 tan ψ1

v

)2
]1/2 . (6)

Solving for cosα gives

cosα = ± cosα′
[

1 −
(
u1 tan ψ1

v

)2

sin2 α′
]1/2

− u1 tan ψ1

v
sin2 α′. (7)

For v >u1 tan ψ1 only the positive sign is allowed, and for
v <u1 tan ψ1 both signs are allowed. Positive and nega-
tive cosα are to be interpreted in terms of incidence from
upstream and downstream (regions 1 and 2), respectively.

While equation (4) correctly describes the range of
pitch angles in the dHTF for which particles will be
reflected at the shock, there is an additional constraint
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Figure 3 Schematic of the upstream v-space in the NIF. The
points corresponding to maximum energy gain are indicated by the
large dots. Other labels are explained in the text.

on the pitch angles α′
1 which particles can have in the

dHTF. Specifically, although all pitch angles are possi-
ble in the NIF, under some circumstances a range of pitch
angles in the dHTF is excluded. In particular, particles with
v >u1 tan ψ1 map to all possible values of α′

1 between
0 and 2π . However, particles with v <u1 tan ψ1 only map
to pitch angles in the dHTF which satisfy

sin α′
1 < v/u1 tan ψ1. (8)

On comparison of equations (4) and (8) one concludes that
reflection is possible only for particles with

v > u1 tan ψ1(B1/B2)
1/2. (9)

All particles for which the inequality (9) is reversed are
transmitted through the shock into the downstream region.

4.1 The Upstream Velocity Space

A schematic plot of the (2-dimensional) upstream veloc-
ity space in the NIF is shown in Figure 3. The different
lines divide the phase space into regions based on the
nature of the particles’encounter with the shock. The solid
lines correspond to the reflection condition (4). The elec-
tric drift causes a particle with µ= cosα1 = 0 to drift
toward the shock with speed u0. Hence particles with
vu‖ >−u0 encounter the shock. The particles that sat-
isfy this condition and are above the diagonal line to the
right are reflected from the shock. After reflection these
particles appear to the left of the vertical dashed line
v‖ = −u0 and above the diagonal line to the left. Particles
to the right of the line v‖ = −u0 and below the diagonal
line to the right encounter the shock and are transmitted
downstream. Particles may also overtake the shock from
the downstream region. Particles to the left of the ver-
tical dashed line v‖ = −u0 and below the diagonal line
to the left have been transmitted from downstream. The
labels in Figure 3 correspond to overtaken particles that
are transmitted downstream (OD), particles that encounter
the shock head-on and are transmitted downstream (HD),
particles that are overtaken by the shock and are reflected
upstream (OR), particles that encounter the shock head-
on and are reflected upstream (HR), and particles that

HDTU

0u− 0

OD

||

⊥

HD

�

�

Figure 4 Schematic of the downstream velocity space in the NIF.
The point corresponding to maximum energy gain is indicated by
the large dot. The labels on the different regions are explained in the
text, and correspond directly to the labels in Figure 3.

have overtaken the shock and been transmitted from down-
stream to upstream (TU). The subscripts i for incident and
r for reflected are included to distinguish between parti-
cles before and after reflection, respectively. The particles
in the regions labelled OR and HR satisfy equation (9).

4.2 The Downstream Velocity Space

A schematic plot of the downstream velocity space is
shown in Figure 4. The diagonal lines in Figure 3 map
into the vertical line at v‖ = vµ= −u0 in Figure 4. The
HD and OD particles in Figure 3 fill the entire region
to the right of the vertical dashed line in Figure 4, and
the separation between them (the segment of the v⊥-axis
below the intersection with the diagonal line in Figure 3)
maps into a curve which is drawn only schematically in
Figure 4. The particles to the left of the vertical dashed
line in Figure 4 encounter the shock and are transmitted
into the upstream region.

5 The Energy Change

Although there is no energy change in the dHT frame,
in the NIF particles tend to gain energy when reflected
from or transmitted through a shock, because the parti-
cles drift along the shock in the direction of the electric
force. The energy change can be determined by consider-
ing the change in the particle momentum in the dHT frame,
and then applying the Lorentz transformation to find the
change in the NIF. Toptyghin (1980, 1985) presented
expressions for the energy change of test particles reflected
from or transmitted through a shock. All reflected parti-
cles gain energy from the encounter, but some transmitted
particles lose energy (Webb, Axford, & Terasawa 1983).

5.1 Reflected Particles

The maximum energy increase is largest for reflected par-
ticles. Reflection is possible only when (9) is satisfied,
and the interesting case is when tan ψ1 is large, i.e.
when B is nearly parallel to the shock front. Then the
momentum component along the y-axis (the direction
of the relative velocity between the two frames) is
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approximately equal to the parallel momentum. The
Lorentz transformation implies an energy change on
reflection equal to �ε = u0�p′

y , which therefore implies
�ε ≈ u0�(p′ cosα′). On reflection p′ cosα′ changes
sign, so �(p′ cosα′)= 2p′ cosα′. Then using (4) and (5)
to reexpress the result in terms of p and α, it follows that
the change in energy on reflection is given by

(�ε)ref = 2ε

(
u1 tan ψ1v

c2

)(
cosα + u1 tan ψ1

v

)
.

(10)

Shock drift acceleration preferentially increases the paral-
lel energy of a reflected particle, and so leads to a decrease
in the pitch angle.

The energy ratio εr/εi of the reflected (r) to the incident
(i) particles follows from (10), subject to the restrictions
(4) and (9). However, in the nonrelativistic limit the ratio of
the kinetic energies, Er/Ei = v2

r /v
2
i , where E = ε −mc2,

is most simply deduced from Figure 3. Consider two
points, A = (vi‖, vi⊥) and B = (vr‖, vr⊥), that correspond
to a particle before and after reflection. Then vr⊥ = vi⊥
and vr‖ = −2u0 − vi‖, so if A is the point v⊥, vi‖ = −x

in velocity space, B is the point v⊥, v‖ = −(2u0 − x),
cf. Figure 6. Thus

Er

Ei

= v2
r

v2
i

= (2u0 − x)2 + v2⊥
x2 + v2⊥

. (11)

A surface plot and contour plot of the energy ratio of
the reflected particles, as a function of (vi‖, vi⊥), is shown
in Figure 5. The figure shows clearly that the energy
ratio is modest, and that only particles from a small region
of phase space near the boundary of the region from
which reflection occurs attain a significant fraction of the
maximum possible energy increase.

Figure 5 Energy ratio for particles reflected upstream from a
shock with B1/B2 = 0.25, as a function of pre-shock velocity with
vpar = v‖/u0 and vperp = v⊥/u0. The lowest contour shown corre-
sponds to an energy ratio of 2, and the contour values increase in
units of 2.

It is clear from Figure 5 that the maximum value
of Er/Ei occurs on the slanted line where v⊥ is min-
imized (α′ =αc, sin2 αc =B1/B2), that separates the
region where particles are reflected from the region where
they are transmitted, cf. Figure 6. For this case equation
(5) implies

v⊥ = vi sin αi = vr sin αr = (u0 − x)tanαc,

vi‖ = vi cosαi = −x, vr‖ = vr cosαr = −(2u0 − x).

(12)

Substitution of (12) into (11) then gives

Er

Ei

∣∣∣∣
αc

= (2u0 − x)2 + (u0 − x)2 tan2 αc

x2 + (u0 − x)2 tan2 αc

. (13)

The maximum kinetic energy ratio is found by maximizing
(13) as a function of x. It occurs for x = xmax where

xmax = u0(1 − cosαc), (14)

and takes the value(
Er

Ei

)
max

= 1 + (1 − B1/B2)
1/2

1 − (1 − B1/B2)
1/2 , (15)

which also applies to the relativistic case (Kirk 1994).
(Earlier suggestions that the maximum energy ratio occurs
for the minimum vi , which corresponds to x = u0 sin2 αc

and gives εr/εi = (4B2 − 3B1)/B1, are incorrect (e.g.
Toptyghin 1980).)

The maximum density compression, and magnetic field
increase, at a nonrelativistic shock in a fluid with an adi-
abatic index of 5/3, occurs when the shock is nearly per-
pendicular. In this case B1/B2 = 1/4 and the maximum
value of the energy ratio given by equation (15) is(

Er

Ei

)
max

= 13.93. (16)

To summarise the initial and final properties of the
particles which experience the maximum energy gain we
introduce the quantity

a = u0

v
(17)

AB

⊥

||
OH XYR

�

�

Figure 6 Velocity space in the NIF: O (v‖ = 0, v⊥ = 0) is the origin;
H (v‖ = −u0, v⊥ = 0) is the origin in the dHTF; R (v‖ = −2u0,
v⊥ = 0) is the reflection of O. The slanting lines are the same
as in Figure 3. The point A at v‖ = −x and its reflection B at
v‖ = −(2u0 − x) are those for which the ratio of the lengths OB
to OA, and hence the energy ratio, is maximised.
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Figure 7 Energy ratio for particles transmitted from upstream to downstream through a shock with B1/B2 = 0.25, with vpar = v‖/u0 and
vperp = v⊥/u0. Left: as a function of pre-shock (upstream) velocity with contours shown corresponding to energy ratio values 1, 2, . . . , 6.
Right: as a function of post-shock (downstream) velocity with contours shown corresponding to energy ratio values 2, 4 and 6.

and note that the condition for reflection, equation (4), can
be written in terms of µ′ = cosα′ as

µ′ < µc where µc = (1 − b)1/2 and b = B1

B2
.

(18)

Then the initial parameters of particles which gain the
maximum energy benefit on reflection are

ai max =
{

1

2b

[
1 + (1 − b)1/2]}1/2

,

µi max = −
{

1

2

[
1 − (1 − b)1/2]}1/2

,

(19)

and the final parameters of those particles after reflection
are

ar max =
{

1

2b

[
1 − (1 − b)1/2]}1/2

,

µr max = −
{

1

2

[
1 + (1 − b)1/2]}1/2

.

(20)

These results correspond to

vi = 2u0 sin (αc/2) , vr = 2u0 cos (αc/2) ,(
Er

Ei

)
max

= cot2 (αc/2) . (21)

5.2 Transmitted Particles

There are two kinds of transmitted particles: those starting
upstream and transmitted downstream, and those starting
downstream and transmitted upstream.

5.2.1 Upstream to Downstream

For particles transmitted (t) from upstream to downstream,
in the dHTF one has

1 − µ′2
t = b−1(1 − µ′2

i

)
, v′

t = v′
i . (22)

It is possible to derive the final parameters of the trans-
mitted particles in terms of the initial parameters from
equation (22) with (6) and (7). The ratio of the energy of
the transmitted particles to the initial (upstream) energy
can be written as

Etd

Eiu

= v2
td

v2
iu

=
{
u0 − [

v2
u⊥(1 − b−1) + (vu‖ + u0)

2
]1/2

}2 + v2
u⊥/b

v2
u‖ + v2

u⊥
,

(23)

where vu = vi , and this ratio is illustrated in Figure 7.
The maximum energy ratio of the transmitted parti-

cles is (
Etd

Eiu

)
max

= 1

b

[
1 + (1 − b)1/2] . (24)

This maximum is attained for the same values of ai and
µi as for the maximum energy gain on reflection given
by equation (19), and the corresponding values of at ,
µt are

at max = 1

21/2
, µt max = − 1

21/2
. (25)

Note that the final speed of the transmitted particle at
this maximum is independent of the compression ratio,
vt max = 21/2u0. The increase in the energy ratio (24)
with decreasing b (increasing compression ratio) is due
to a decrease (with decreasing b) in the initial speed,
vi max = {2[1 − (1 − b)1/2]}1/2u0.

5.2.2 Downstream to Upstream

For particles transmitted from downstream to upstream,
the energy ratio of the transmitted particles to the initial
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Figure 8 Energy ratio for particles transmitted from down-
stream to upstream through a shock with B1/B2 = 0.25, as a
function of post-shock (upstream) velocity with vpar = v‖/u0 and
vperp = v⊥/u0. The contours shown correspond to energy ratio
values 1.2 and 1.4.

(downstream) energy can be written as

Etu

Eid

= v2
tu

v2
id

= v2
u‖ + v2

u⊥{
u0 + [

v2
u⊥(1 − b−1)+ (vu‖ + u0)2

]1/2
}2 + v2

u⊥/b

,

(26)

where now vu = vf , and this ratio is illustrated in Figure 8.
The maximum energy ratio of the particles is(

Etu

Eid

)
max

= 1 + (1 − b)1/2, (27)

which occurs for particles with initial parameters

aid = 1

21/2
, µid = − 1

21/2
(28)

which attain parameters

atu =
{

1

2b

[
1 − (1 − b)1/2]}1/2

,

µtu = −
{

1

2

[
1 + (1 − b)1/2]}1/2

.

(29)

6 Structure within the Shock

Although shocks are often modelled as simple discontinu-
ities, the fluid parameters change from their upstream to
their downstream values over a finite distance. When the
natural length scales of the processes being considered
are much greater than the shock thickness the detailed
structure of the shock can be ignored. However, when the
length scales are comparable to or less than the shock

thickness it is essential to take account of the detailed
structure of the shock transition. The thickness of a ‘colli-
sionless’ shock transition is comparable to the gyroradius
of the bulk of the ions in the plasma. Energetic ions have
much larger gyroradii and so see the shock essentially
as a simple discontinuity. Electrons have much smaller
gyroradii than ions of comparable energy, so the detailed
structure of shock transitions is particularly important for
electron processes.

In the dHTF ions incident on the shock from upstream
are slowed down and deflected as they cross the shock. The
forces responsible arise from a magnetic field component
within the shock which is out of the plane of coplanarity
of the upstream and downstream fields B′

1 and B′
2, and

from an electric field associated with a potential differ-
ence, φ′, across the shock (e.g. review by Onsager &
Thomsen 1991, and references therein). The presence of a
component of the magnetic field out of the ‘plane of copla-
narity’(the plane containing the upstream and downstream
plasma velocities) was first postulated by Goodrich &
Scudder (1984), in order to match the deceleration of the
ion plasma flow in the NIF and the dHTF. It was later
shown by Jones & Ellison (1987) that the non-coplanar
magnetic field is necessary to cancel currents within the
plane of coplanarity, which otherwise arise because of
the unequal mass of electrons and ions. Jones & Ellison
(1987) calculated an expression for the integral of the non-
coplanar magnetic field component across the shock layer,
but were unable to predict its maximum value. The mag-
nitude of this component has since been estimated from
numerical simulations of shock fronts and from observa-
tions with spacecraft at the Earth’s bowshock which have
detected the non-coplanar field directly, and may be as
great as the upstream magnetic field strengthB1 (Thomsen
et al. 1987; Gosling, Winske, & Thomsen 1988; Friedman
et al. 1990). Also relevant is the observed magnetic ‘over-
shoot’ — in which the magnitude of the magnetic field
is seen to increase beyond B2 in the shock transition
region, before dropping again to B2 on the downstream
side of the shock (Leroy et al. 1982). Thus a particle
interacting with the shock front encounters a maximum
magnetic field strength Bmax which is somewhat greater
than B2.

The cross-shock electric field slows down ions, and
hence accelerates electrons. The magnetic field struc-
tures within the shock increase the maximum magnetic
field seen by particles and have the effect of increas-
ing the ‘reflectivity’ of the mirror. The effects of the
cross-shock potential on the orbits of individual electrons
have been considered in detail for strictly perpendic-
ular shocks (Balikhin, Gedalin, & Petrukovich 1993;
Balikhin & Gedalin 1994; Gedalin et al. 1995a; Ball &
Galloway 1998), and the treatment generalised to quasi-
perpendicular shocks by Gedalin et al. (1995b). Here
we consider the modifications of the treatment of shock
drift acceleration given above due to these internal shock
structures, under the assumption that after averaging over
gyrophase the magnetic moment p2⊥/B is conserved.
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6.1 Conditions for Reflection

As electrons cross the shock, conservation of energy
in the dHTF requires 1

2mv′2(x) − eφ′(x)= constant =
1
2mv′2

i − eφ′
i , where x denotes distance through the shock

profile. The magnetic moment is also conserved, corres-
ponding to v′2⊥(x)/B(x)= constant = v′2

i⊥/Bi . Together
these imply

v′‖(x)2 = v′2
i − 2eφ′

i

m
− v′2

i⊥
B(x)

Bi

+ 2eφ′(x)
m

. (30)

Particles will be reflected if v‖(x)= 0 (or equivalently,
if v′2⊥(x)= v′2(x)) for some value of x within the shock.
In general the details of the magnetic field and electric
potential dependence through the shock will be impor-
tant for determining whether or not a particle is reflected.
However, the case where the field increases monotonically
from upstream to downstream — i.e. when any magnetic
overshoot is neglected — is relatively simple. We first
define the following parameters:

φ′
u = 0 φ′

d = φ′ (31)

are the values of the electric potential on the upstream and
downstream sides of the shock, respectively, and

U =
√

2eφ′
m

(32)

is a constant such that 1
2mU2 is the decrease in the electric

potential energy of an electron on crossing the shock from
upstream to downstream.

6.1.1 Upstream Reflection, No Magnetic Overshoot

The limiting condition for particles which encounter the
shock from upstream (v′‖ > 0 and Bi =B1, φ′

i =φ′
u = 0)

and are just reflected at the downstream edge of the shock
is equivalent to requiring that v′‖(x)= 0 for the down-
stream parameters, B(x)=B2 and 2eφ′(x)/m=U2. It
follows from equation (30) that the limiting boundary in
the upstream dHTF velocity space, such that the particles
above the curve are reflected, corresponds to

v′2
u⊥ = b

1 − b

(
v′2
u‖ + U2) (33)

with b=B1/B2. The conditions for upstream reflection in
the NIF are thus

vu‖ > −u0, and v2
u⊥ >

b

1 − b

[(
vu‖ + u0

)2 + U2
]
,

(34)

which implies that there can be no reflected particles with
v⊥ <v⊥ min,

v⊥ min = U

√
b

1 − b
. (35)

Particles with v2
u⊥ less than that defined by the limiting

curve in (34), and with vu‖ >−u0, encounter the shock

HRr

ORr ORi

HRi

OD
HD

|| 0u/

⊥
0

u /
�

�

Figure 9 The upstream phase space in the NIF when a cross-shock
potential is included. The labels are explained in Section 4.1 in
association with Figure 3. The limiting boundary is the solid curve,
which approaches the sloping dotted lines as U → 0. Particles below
the limiting boundary (solid line) and to the right of the vertical
dashed line at v‖ = −u0 encounter the shock andare transmitted
downstream.

and are transmitted from upstream to downstream.
Figure 9 illustrates these different regions of the upstream
phase space in the NIF.

The geometric argument used to determine the maxi-
mum energy ratio on reflection (given above in connection
with Figure 6) can be generalised to include the parallel
electric field. The energy ratio for a reflected particle is
given by equation (11). In place of equation (12) one finds

v⊥ = vi sin αi = vr sin αr = [
(u0 − x)2 + U2]1/2

tan αc,

vi‖ = vi cosαi = −x, vr‖ = vr cosαr = −(2u0 − x).

(36)

The energy ratio on the limiting boundary is then

Er

Ei limit
= (2u0 − x)2 + [

(u0 − x)2 + U2
]

tan2 αc

x2 + [
(u0 − x)2 + U2

]
tan2 αc

,

(37)

which has zero derivative when[
(u0 − x)2 + U2] tan2 αc = x(2u0 − x), or

x2 − 2u0x + (
u2

0 − U2) sin2 αc = 0. (38)

Writing the solutions as x = x±, one finds

x± = u0 ± (
u2

0 cos2 αc + U2 sin2 αc

)1/2
, (39)

which correspond to

v2
i = 2u0x− + U2 sin2 αc, v2

r = 2u0x+ + U2 sin2 αc,

(40)

whence

(
Er

Ei

)
max

= 2u2
0 + 2u0

(
u2

0 cos2 αc + U2 sin2 αc

)1/2 + U2 sin2 αc

2u2
0 − 2u0

(
u2

0 cos2 αc + U2 sin2 αc

)1/2 + U2 sin2 αc

.

(41)

Note that (41) implies that the maximum energy ratio is
an increasing function of U2.
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6.1.2 Downstream Reflection, No Magnetic
Overshoot

When the cross-shock potential is included it is also pos-
sible for particles which encounter the shock from down-
stream to be reflected. By direct analogy with reflection
from upstream, the conditions for reflection are as follows.
Only particles with v′

i‖ < 0 in the downstream region can
encounter the shock. The condition for reflection of such
particles (Bi =B2, φ′

i =φ′
d =φ′) at the upstream edge of

the shock is that v′‖(x)= 0 for the upstream parameters,
B(x)=B1 and 2eφ′(x)/m= 0. It then follows from equa-
tion (30) that the limiting boundary in the downstream
dHTF, such that particles below the curve are reflected
downstream, is

v′2
d⊥ = 1

1 − b

(− v′2
d‖ + U2). (42)

When v′
d‖ <−U the right hand side of equation (42) is

negative and particles cannot be reflected. The conditions
for downstream reflection in the NIF are thus

−U − u0 < vd‖ < −u0, and

v2
d⊥ <

1

1 − b

[−(vd‖ + u0)
2 + U2]. (43)

All particles with vd‖ <−U − u0, and particles with
−U − u0 <vd‖ <−u0 and v2

u⊥ greater than that defined
by the limiting curve in (43), will encounter the shock and
be transmitted from downstream to upstream. Figure 10
illustrates these different regions of the downstream phase
space in the NIF.

6.1.3 Upstream and Downstream Reflection,
with Magnetic Overshoot

In the simplest treatment including both a magnetic
overshoot and a cross-shock potential, the condition for
particles to be reflected upstream is straightforward. If
the maximum magnetic field is Bmax, then the limiting

|| 0u/

⊥
0

u /

R i R r
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�

�

Figure 10 The downstream phase space in the NIF showing the
limiting boundary — the solid ellipse — when there is a cross-shock
potential (with U = u0/2) but no magnetic overshoot (b= bm1 =
0.25). Particles to the left of the vertical dashed line at v‖ = −u0
encounter the shock. Of these, the particles which are also below the
limiting boundary — i.e. in the region labelled Ri — are reflected and
appear in the region labelled Rr. Particles to the left of the vertical
dashed line and above the limiting boundary — i.e. in the region
labelled TU — are transmitted from downstream to upstream.

boundary in the upstream NIF is simply given by equa-
tion (34) with b replaced by the parameter bm1 =B1/Bmax

which satisfies bm1 <b. Since the maximum magnetic
field which can reflect the particles is higher than when
there is no overshoot, the region of phase space from which
particles can be reflected upstream is larger. In particu-
lar, the minimum value of vu⊥ for which particles can be
reflected is larger, and the slope of the limiting boundary
at large |v′

u‖|, namely
√
bm1/(1 − bm1), is smaller.

The inclusion of a magnetic overshoot implies that par-
ticles incident on the shock from downstream can also be
reflected, even when the cross-shock potential is zero. This
arises because of the magnetic mirror associated with the
fact that the maximum magnetic field is greater than the
downstream field, and it results in a qualitative change
in the limiting boundary. In this case the conditions for
downstream reflection in the NIF are

vd‖ < −u0, and

v2
d⊥ >

bm2

1 − bm2

[
(vd‖ + u0)

2 − U2] (44)

where bm2 =B2/Bmax = bm1/b. Note that when −U −
u0 <vd‖ <−u0 the right hand side of equation (44) is
negative, and so all such particles are reflected. Figure 11
illustrates these different regions in the downstream phase
space in the NIF.

6.1.4 Transmitted Particles

We now consider the fate of the particles which are
transmitted through the shock.

Particles initially upstream of the shock which satisfy
the conditions

vu‖ > −u0, and

v2
u⊥ <

bm1

1 − bm1

[
(vu‖ + u0)

2 + U2], (45)
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⊥
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Figure 11 The downstream phase space in the NIF when there is a
magnetic overshoot (with b= 0.25 and bm2 = 0.5). The solid curves
are the limiting boundary when there is also a cross-shock potential
(withU = u0/2) and the dotted lines show the boundary whenU = 0.
Particles to the left of the vertical dashed line at v‖ = −u0 encounter
the shock. Of these, particles above the limiting boundary — i.e. in
the region labelled Ri — are reflected downstream and appear in the
region labelled Rr. Particles to the left of the vertical dashed line and
below the limiting boundary — labelled TU — are transmitted from
downstream to upstream.
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Figure 12 The downstream phase space in the NIF, showing the
region occupied by electrons transmitted from upstream to down-
stream, when there is a magnetic overshoot and a cross-shock
potential (with b= 0.25, bm1 = 0.125 and U = u0/2).

are transmitted from upstream to downstream (cf. equation
(34)). After transmission the particles have velocities

v2
d⊥ = b−1v2

u⊥,

vd‖ = (
v2
u + 2u0vu‖ − b−1v2

u⊥ + u2
0 + U2)1/2 − u0,

(46)

with b=B1/B2 ≥ bm1 =B1/Bmax. The boundary of the
region of downstream phase space occupied by the trans-
mitted particles comprises part of an ellipse together with
a straight line, as shown in Figure 12. The ellipse is the
boundary of the region

0 ≤ vd⊥ ≤ U

√
bm1

b(1 − bm1)
, and

vd‖ ≥ [
v2
d⊥(b − 1) + U2]1/2 − u0, (47)

and the straight line bounds the region

vd⊥ ≥ U

√
bm1

b(1 − bm1)
, and

vd‖ ≥ vd⊥
[
b(1 − bm1)

bm1
+ b − 1

]1/2

− u0. (48)

When there is a cross-shock potential but no magnetic
overshoot, electrons initially downstream of the shock
which satisfy the conditions

vd‖ < −u0, and

v2
d⊥ >

1

1 − b

[−(vd‖ + u0)
2 + U2], (49)

are transmitted from downstream to upstream. After
transmission the electrons have velocities

v2
u⊥ = bv2

d⊥,

vu‖ = −(v2
d + 2u0vd‖ − bv2

d⊥ + u2
0 − U2)1/2 − u0.

(50)
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Figure 13 The upstream phase space in the NIF, showing the region
occupied by electrons transmitted from downstream to upstream,
when there is a cross-shock potential (with U = u0/2) but no
magnetic overshoot (with b= bm1 = 0.25).

The boundary of the region occupied by the transmit-
ted electrons in the upstream phase space is shown in
Figure 13. The vertical straight line bounds the region

vu⊥ < U

√
b

1 − b
, and

vu‖ < −u0, (51)

and the curve bounds the region

vu⊥ > U

√
b

1 − b
, and

vu‖ < −
[
v2
u⊥

(1 − b)

b
− U2

]1/2

− u0. (52)

When there is both a cross-shock potential and a mag-
netic overshoot the boundary of the region of phase space
occupied by electrons transmitted from downstream to
upstream is simpler. Electrons which satisfy

vd‖ < −U − u0, and

v2
d⊥ <

bm2

1 − bm2

[
(vd‖ + u0)

2 − U2] (53)

are transmitted. They occupy the region of upstream phase
space bounded by the straight line

vu‖ < −vu⊥
(

1 − bbm2

bbm2

)1/2

− u0. (54)

6.1.5 Forbidden and Overlap Regions

When there is no magnetic overshoot in the shock the
boundaries of the regions of phase space occupied by
reflected and transmitted electrons are the same. When
there is a magnetic overshoot the boundaries can be
different, and there can be ‘forbidden regions’ of phase
space in which electrons can never encounter the shock,
and ‘overlap regions’ in which electrons may have been
either transmitted through or reflected from the shock.
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Figure 14 Left: the upstream phase space in the NIF, showing the forbidden region occupied by electrons which can never
encounter the shock. Right: the downstream phase space in the NIF, showing the overlap region occupied by electrons reflected
downstream and by electrons transmitted from upstream to downstream. The parameters used here are b= 0.25, bm1 = 0.125
and U = u0/2.

In the half-plane of the upstream phase space with
vu‖ <−u0, there is a forbidden region which is not acces-
sible to electrons which have been reflected upstream
or those which have been transmitted from downstream
to upstream. In the half-plane of the downstream phase
space with vd‖ >−u0, there is an overlap region populated
both by electrons which have been reflected downstream
and those which have been transmitted from upstream to
downstream.

These regions are illustrated in Figure 14. In the
upstream phase space, electrons reflected from the shock
(Rr ) occupy the region to the left of the vertical dashed
line and above the solid curve. Electrons transmitted
from downstream to upstream (TU) lie below the dot-
ted sloping line. The shaded region is forbidden in the
sense that electrons between the dotted and solid bound-
aries never encounter the shock. In the downstream phase
space, electrons reflected from the shock (Rr ) occupy the
region above the solid curve. Electrons transmitted from
upstream to downstream (TD) lie below the dotted bound-
ary. In the shaded overlap region these two populations
coexist.

Studies of the population of electrons around the for-
bidden region at the Earth’s bow shock indicate that
electrons may indeed avoid the forbidden region (Feldman
1985; Scudder et al. 1986; Gosling et al. 1989), which may
provide support for arguments that shock drift acceleration
operates at collisionless shocks in the heliosphere.

7 Effectiveness of Acceleration

In order for shock drift acceleration to be an important
effect in physical systems, a significant fraction of the
electrons incident on the shock must experience a sub-
stantial energy gain. In this section we seek to quantify
this requirement.

7.1 The Parallel Distribution Function

Let fi(vi‖, v⊥) be the distribution function of the incident
particles, and fr(vr‖, v⊥) be that of the reflected particles.
On reflection one has vr‖ = −(2u0 + vi‖); the perpendic-
ular speed is unchanged on reflection, and vr⊥ = vi⊥ is
denoted v⊥. It is convenient to define a parallel distribution

function by writing

Fi(v‖) = 2π
∫ ∞

0
dv⊥ v⊥ fi(v‖, v⊥). (55)

For the reflected particles the perpendicular velocity must
exceed the limit defined by (34). Writing this condition as

v2⊥ � v2⊥ min = b

1 − b

[
(v‖ + u0)

2 + U2], (56)

one has

Fr(v‖) = 2π
∫ ∞

v⊥ min

dv⊥ v⊥ fr(v‖, v⊥), (57)

with
fr(v‖, v⊥) = fi(−2u0 − v‖, v⊥). (58)

For an isotropic distribution of incident particles, it is
convenient to define

G(x) = 2π
∫ ∞

x

dv vfi(v). (59)

Then for the incident particles one has Fi(vi‖)=G(vi‖).
Equation (57) implies that for the particles that are to
be reflected by the shock, Fr(vi‖)=G[(v2

i‖ + v2⊥ min)
1/2],

before those particles encounter the shock.

7.1.1 Fraction of Reflected Particles

Particles gain energy on reflection, and in considering
the efficiency of the acceleration it seems appropriate
to consider the conditions under which the number of
reflected particles is maximised. The fraction, Rr(vi‖), of
the particles reflected is

Rr(vi‖) = G(vi)

G(vi‖)
, (60)

with vi = (v2
i‖ + v2⊥ min)

1/2 located on the limiting bound-
ary, cf. Figure 9.

According to (60), the fraction of particles reflected is
a monotonically decreasing function of increasing v2⊥ min.
It then follows from (57) that the maximum fraction
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reflected occurs for vi‖ = −u0, and from (55) this max-
imum is

(Rr)max = Rr(−u0) =
G
[(
u2

0 + bU2/(1 − b)
)1/2

]
G(u0)

,

U2 = 2eφ′/m. (61)

However, equation (37) implies that for vi‖ = −u0 there
is zero energy change on reflection. Thus, it turns out
that maximising the fraction of particles reflected is of no
relevance to optimising the effectiveness of acceleration.

7.1.2 Fraction Reflected with Maximum
Energy Change

More relevant in considering the effectiveness of acceler-
ation is the fraction of particles reflected at the value of
vi‖ where the energy change is maximised. In the absence
of a cross-shock potential the relevant particle parameters
are given by (12) with (14), or (21). In this case, one has
the following values in (60):

vi = 2u0 sin (αc/2) , vi‖ = −2u0 sin2 (αc/2) . (62)

When the parallel electric field is included, according to
(40) with (39), (62) is replaced by

v2
i = [

x2− + u0 sin2 (αc/2)
]1/2

, vi‖ = −x−,

x− = u0 − (
u2

0 cos2 αc + U2 sin2 αc

)1/2
. (63)

To progress further we need to assume an explicit form
for the distribution function. We consider Maxwellian
and power law distributions.

7.2 Maxwellian Distribution Function

For a Maxwellian distribution,

f (v) = ne

(2π)3/2V 3
e

exp

(
− v2

2V 2
e

)
, (64)

one has

G(v‖) = ne

(2π)1/2Ve

exp

(
− v2‖

2V 2
e

)
. (65)

In this case substitution of either (62) or (63) into (60)
implies that the ratio of particles reflected at the value of
vi‖ where the energy change is maximised, is given by

(Rr)opt = exp

(
−v2

i − v2
i‖

2V 2
e

)
= exp

(
−u2

0 sin2 (αc/2)

2V 2
e

)
.

(66)

The ratio (66) is of order unity for u2
0 sin2(αc/2)� 2V 2

e

and is very small when this inequality is strongly reversed.
This reflects the fact that for a significant fraction of the
initial electrons to be accelerated, vi must not be too much
greater than the mean thermal speed.

The ratio of the final to the initial energy is cot2(αc/2),
cf. (21). Hence, one may conclude that for a Maxwellian
distribution, SDA can be effective in increasing the energy
of electrons with an initial energy of at most a few times
the thermal energy by a factor cot2(αc/2). For a significant
fraction of the thermal electrons to be accelerated requires
u2

0 sin2(αc/2)� 2V 2
e .

7.3 Power Law Distribution

For particles with a power law distribution of the form

f (v) ∝ v−(δ+2), (67)

it follows that
G(v‖) ∝ v−δ

‖ . (68)

Then using (63) one has

(Rr)opt =
(

vi

vi‖

)−δ

=
(
x2− + u0 sin2 (αc/2)

x2−

)−δ/2

.

(69)

When the parallel electric field is neglected, (69) simpli-
fies to

(Rr)opt = sinδ(αc/2). (70)

The effectiveness of the acceleration in this case may be
estimated by comparing the parallel distribution function
of the reflected electrons with the electrons at the same v‖
in the initial distribution. Taking account of the fraction
(70) that are reflected, this ratio is

Fr(vr‖)
Fi(vr‖)

= sinδ (αc/2)
(
vi‖/vr‖

)−δ

= cos2δ (αc/2) sin−δ (αc/2) . (71)

By way of illustration, for b= 1/2, 1/3, 1/4, one has
αc = 45◦, 35◦, 30◦, and cos2(αc/2)/ sin(αc/2)= 2.23,
3.02, 3.60, respectively, and the ratio (71) is given by these
final numbers to the power δ.

7.4 Streaming Instability Criterion

The criterion for growth of Langmuir waves propagating
along the magnetic field lines is k‖ dF(v‖)/dv‖ > 0. One
finds

dF(v‖)
dv‖

= dG(v0)

dv‖
,

v2
0 = b

1 − b

[
(v‖ + u0)

2 + U2]+ (v‖ + 2u0)
2.

(72)

The criterion for instability becomes

dv2
0

dv‖
= 2

b

1 − b
(v‖ + u0) + 2(v‖ + 2u0) < 0, (73)

which reduces to v‖ <−(2 − b)u0. One finds

dF(v‖)
dv‖

= −2πG(v0)

[
b

1 − b
(v‖ + u0) + (v‖ + 2u0)

]
,

(74)
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with v0 given by (72). It is notable that the criterion for
growth for an isotropic initial distribution of electrons
is independent of the distribution function. However, the
magnitude of the growth rate does depend on the details
of the distribution function through G(v0).

8 Discussion and Conclusions

Our purpose in this paper is to review and extend the
known results on shock drift acceleration, especially of
nonrelativistic electrons. In one sense, shock drift accel-
eration is a simple process in that it can be described
essentially ballistically by considering reflection and
transmission from a shock in the dHTF, and by then trans-
forming to the frame of interest. However, the results are
far from simple due to the energy change being substantial
only in very restricted ranges of parameter space. In partic-
ular, shock drift acceleration causes a substantial change
in the energy of particles only in a very localised region
of velocity space, as illustrated in Figure 5, and only for a
small range of angles between the shock normal and the
direction of the magnetic field. We determine the maxi-
mum value of the ratio of the final to the initial energy,
and find that it has the same value, cf. (15) and (16), as
in the relativistic case (Kirk 1994), rather than the value
quoted by Toptyghin (1980).

We include the effect of a cross-shock electric field and
of the magnetic overshoot, both of which are accepted fea-
tures in the theory of collisionless shocks. The cross-shock
electric field is described by a potential energy 1

2mU2, and
it is found that the ratio of the final to the initial energy of
reflected electrons is a monotonically increasing function
of U2. The magnetic overshoot leads to a forbidden region
in the upstream velocity space, and an overlap region in
the downstream velocity space which particles can reach
in two distinct ways. We also estimate the efficiency of
the acceleration by comparing the distributions of inci-
dent and reflected particles. However, the sensitivity to
the parameters precludes any simple general conclusions
relating to the efficiency of shock drift acceleration.

An important suggested application of shock drift
acceleration is to the acceleration of electrons that produce
Type II solar radio bursts in the solar corona and the solar
wind (Holman & Pesses 1983; Leroy & Mangeney 1984;
Wu 1984; Street, Ball, & Melrose 1994; Krauss-Varban &
Wu 1989). In this context it is important to determine the
condition under which the reflected accelerated electrons
drive a beam instability, which is assumed to be an essen-
tial step in the generation of the radio emission. We show
that, for isotropic incident electrons, the condition for the
beam instability to develop is independent of the form of
the distribution function, and is given by (73). This pro-
vides a potential test for the suggestion that shock drift
acceleration causes Type II radio emission. We propose to
pursue this point in detail elsewhere.
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