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Abstract: Beam-driven Langmuir waves in the solar wind are generated just above the electron plasma
frequency, which fluctuates in the inhomogeneous solar wind plasma. Consequently, propagating Langmuir
waves encounter regions in which the wave frequency is less than the local plasma frequency, where they
can be reflected, mode converted to transverse electromagnetic waves, and trapped in density wells. The aim
here is to investigate Langmuir wave reflection and mode conversion at a linear density gradient for typical
solar wind parameters. It is shown that higher mode conversion efficiencies are possible than previously
calculated, but that mode conversion occurs in a smaller region of parameter space. In addition, the possibility
of detecting mode conversion with in situ spacecraft Langmuir wave observations is discussed.
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1 Introduction

Mode conversion between Langmuir waves and transverse
electromagnetic waves (or their magnetised counterparts)
in an inhomogeneous plasma is the accepted mechanism
for the generation of a Z-trace when pulses of radio waves,
incident from the ground, are reflected from Earth’s iono-
sphere (e.g. Budden 1985, p. 502). It is also a likely
candidate for nonthermal continuum radiation from the
magnetospheres of Earth and Jupiter (Jones 1980). Linear
mode conversion has also been postulated (e.g. Melrose
1980a; Yin & Ashour-Abdalla 1999) as an alternative
process to the nonlinear processes of fundamental decay
or scattering by thermal ions for the generation of solar
radio bursts and fundamental radiation in Earth’s fore-
shock associated with electron-beam-driven Langmuir
waves (Melrose 1980b; Cairns 1987; Robinson, Cairns,
& Willes 1994). It may also be relevant to auroral roar
radio emissions (Yoon et al. 1998). Since mode conversion
was first proposed theoretically (Field 1956), a substantial
literature has developed (see the introduction in Hinkel-
Lipsker, Fried, & Morales (1992) for a thorough review);
however, we limit our discussion to the results of direct
relevance to the present analysis.

This paper is primarily motivated by Langmuir waves
in the solar wind and Earth’s foreshock observed using the
Time Domain Sampler (TDS) instrument on the WIND
spacecraft. This instrument simultaneously measures
high-time-resolution wave electric fields on two ortho-
gonal antennas (Bale et al. 1998; Kellogg et al. 1999).
Two surprising features of these observations are that the
waveform envelopes on the antennas are often substan-
tially different, and that the relative phase between the
two signals often drifts substantially and monotonically
over the 17 ms sample time of each TDS event. These
observations are inconsistent with quasi-monochromatic
electrostatic Langmuir waves, and have been interpreted
as (i) evidence for the electromagnetic properties of low

wavenumber Langmuir waves in a magnetised plasma
(Bale et al. 1998), and (ii) the signature of Langmuir
wave reflection at density gradients (Kellogg et al. 1999).
These interpretations are not necessarily contradictory.
A third possibility, investigated in this paper, is mode
conversion of Langmuir waves propagating nearly par-
allel to the density gradient to transverse waves, which
can occur in addition to Langmuir wave reflection. Mode
conversion and Langmuir wave reflection are expected
to occur in the inhomogeneous solar wind, where the
local plasma frequency often exceeds the frequency of
generated Langmuir waves (Kellogg 1986; Kellogg et al.
1999).

The aims of this paper are to calculate mode con-
version efficiencies for typical solar wind parameters, and
to determine whether it is possible, in principle, to find
evidence for mode conversion in the spacecraft Lang-
muir waveform data. To achieve this second aim it is
necessary to solve the mode conversion problem for the
wave fields. Many earlier analyses focused solely on cal-
culating the mode conversion efficiency, which may be
determined without resorting to a full wave field solution
to the wave equations. One exception in the early liter-
ature is Forslund et al. (1975), who numerically solved
the wave equations for the ‘direct’ problem in a warm
unmagnetised plasma, where a transverse wave incident
from a vacuum encounters a linear density gradient. This
approach was generalised by Means et al. (1981) for inci-
dent waves from a homogeneous plasma (not necessarily
a vacuum). Means et al. (1981) and Hinkel-Lipsker et al.
(1992) showed that the mode conversion efficiency is the
same for the direct and the ‘inverse’ problem, where an
incident Langmuir wave mode converts to a transverse
wave. More recently, Hinkel-Lipsker et al. (1992) used a
Green’s function approach to provide analytic expressions
for the wave fields. This was generalised to a magnetised
plasma by Yin & Ashour-Abdalla (1999). However, these
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analyses rely on an approximation which only allows an
accurate estimation of the wave fields very close to the
mode conversion point. For this reason, we follow the
approach of Forslund et al. (1975) and Means et al. (1981),
which yields exact solutions for the wave fields and does
not involve any approximations beyond the assumptions
that form the basis of the model.

This paper is structured as follows: in Section 2, the
derivation of the mode conversion equations is outlined.
In Section 3, mode conversion efficiencies are calculated
for typical solar wind parameters, and it is shown that
previous analyses underestimate the maximum conver-
sion efficiency, but overestimate the region of parameter
space in which mode conversion can occur. In Section 4,
the wave field properties for mode conversion and total
Langmuir wave reflection are compared and the possibil-
ity of detecting mode conversion from spacecraft electric
field waveform data is discussed.

2 Theoretical Model

2.1 Derivation of Mode Conversion Equations

In this section, Maxwell’s equations and the fluid elec-
tron momentum equation are linearised and reduced to
two coupled linear second order differential equations.
In Sections 3 and 4, these equations are solved numer-
ically with appropriate boundary conditions to study the
physics of Langmuir wave reflection and mode conversion
in an inhomogeneous medium. This derivation closely
follows similar derivations in Forslund et al. (1975) and
Means et al. (1981). In order to simplify the analysis, the
following assumptions are made:

1. The density gradient is uni-directional and linear. With-
out loss of generality, we define the co-ordinate system
in the rest frame of the solar wind plasma such that the
density gradient ∇n is in the positive X direction, and
the wave electric field vector E lies in the X–Y plane.
The assumed density gradient is illustrated in Figure 1,
where g(X)=ω2

p(X)/ω
2 ∝ n, for plasma frequency

g(X)=1

g(X)

Xmc0

g0

X

out

T

L

inL out

Figure 1 Schematic illustration of linear mode conversion.
Langmuir waves (Lin) approach from the left hand side in a region
of constant plasma density (g(X)= g0 for X< 0). These waves
encounter an increasing (linear) density gradient (for X> 0), and
are reflected where the local plasma frequency equals the Langmuir
wave frequency (g(X)= 1). In addition to the reflected Langmuir
wave, a backward-propagating transverse wave is generated in this
process.

ωp and constant wave frequency ω. Langmuir waves
approach from the left, from a region of constant
plasma density with X< 0. For X≥ 0 the Langmuir
waves encounter an increasing density gradient. The
wave electric field can thus be expressed in the form
E(X, t) = [EX(X), EY (X), 0] exp[i(KYY − ωt)],
where spatial variables are expressed in dimensionless
form usingX= k0x,Y = k0y,K = k/k0, and k0 =ω/c,
where ω is the wave frequency and c is the speed of
light. Here KY = kY /k0 is constant by Snell’s law. We
are seeking steady state solutions, with constant ω, for
the wave fields.

2. The plasma is unmagnetised with no background flows;
i.e. u0 = 0 and B0 = 0, where u(X, t) is the electron
fluid velocity (the ions are static), E(X, t) and B(X, t)
are the wave electric and magnetic fields, and subscripts
0 and 1 refer to unperturbed and perturbed quantities,
respectively.

3. The plasma obeys an adiabatic pressure law, with
pn−γ = constant, where p(X, t) is the plasma pres-
sure, n(X, t) is the electron density, and γ is the ratio of
specific heats. For small perturbations, p0 = n0T , and
p1 = γ n1p0/n0, where T is the electron temperature.

4. Wave damping is negligible.

The four basic equations are the (fluid) electron
momentum equation:

men
∂u
∂t

= −ne(E + u × B)− k0∇p, (1)

where me and e are the electron mass and charge;
Poisson’s equation:

k0∇ · E = ρ

ε0
; (2)

Faraday’s law:

k0∇ × E = −∂B
∂t

; (3)

and Ampere’s law:

k0∇ × B1 = µ0J − 1

c2

∂E
∂t
, (4)

where ρ and J are the charge and current densities,
respectively.

The next step is to linearise equations (1)–(4), with
wave fields E1,B1 ∝ exp(−iωt). To lowest order, the
electron momentum equation (1) yields

E0 = −k0∇p
n0e

(5)

where the pressure force associated with the density
gradient is balanced by a steady state ambipolar electric
field. To first order,

J1 = ie2n1

meω
E0 + iε0 ω

2
p

ω
E1 + iek0γ T∇n1

meω
, (6)

where J1 = − en0u1 and ωp is the electron plasma
frequency, defined by ω2

p = n0e
2/(ε0me).
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The linearised Maxwell’s equations have the form (for
charge density ρ1 = − en1):

k0∇ · E1 = −en1

ε0
, (7)

k0∇ × E1 = iωB1, (8)

k0∇ × B1 = µ0J1 − iωE1

c2
. (9)

After substituting B1 from equation (8), J1 from equa-
tion (6), and n1 from equation (7), into Ampere’s law (9),
the following wave equation is obtained:

∇2E1 − ∇(∇ · E1)+ (1 − g(X))E1

− β

(
−γ∇(∇ · E1)+ (∇ · E1)

∇n0

n0

)
= 0, (10)

where g(X)=ωp(X)2/ω2, and β = Te/mec2. The X

and Y components of this wave equation yield
two coupled second order linear differential equa-
tions for EX(X) and EY (X) (where the total field
E1(X)= [EX(X),EY (X), 0] exp[iKYY ]):
γβE′′

X − iKY (1 − γβ)E′
Y + (

1 − g(X)−K2
Y

)
EX

= β
1

L
(E′

X + iKYEY ), (11)

E′′
Y − iKY (1 − γβ)E′

X

+ (
1 − g(X)− γβK2

Y

)
EY = 0, (12)

where L= (∇n0/n0)
−1|X=Xmc is the (dimensionless)

inhomogeneous length scale. The mode conversion point
Xmc is defined by g(Xmc)= 1. For a linear density gra-
dient, g(X)= g0 +X/L, with g0 = g(0)=ω2

p0/ω
2, and

Xmc =L(1 − g0).
The boundary conditions are determined as follows.

For X< 0, ωp(X)=ωp0 is constant and EY (X) can be
expressed as the sum of three plane waves:

EY (X) = exp(iKLXX)+ RL exp(−iKLXX)
+ TT exp(−iKTXX), (13)

where the first term corresponds to an incoming Langmuir
wave, and KLX is the X component of the dimension-
less Langmuir wavevector, satisfying the Langmuir wave
dispersion relation

K2
LX = 1 − g0

γβ
−K2

Y . (14)

The second term in equation (13) corresponds to a reflec-
ted Langmuir wave, whereRL is the (complex) Langmuir
wave reflection coefficient. The third term corresponds
to the mode converted transverse wave, which propagates
away from the mode conversion region in the negative X
direction, where KTX is the X component of the dimen-
sionless transverse wavevector, satisfying the transverse
wave dispersion relation

K2
TX = 1 − g0 −K2

Y , (15)

and TT is the (complex) mode conversion coefficient.

The angle θL between the incoming Langmuir wave
and the density gradient, at the interface between the
constant and varying density regions (X= 0) obeys

sin2 θL = γβK2
Y

1 − g0
. (16)

The angle θT between the transverse wave and the density
gradient at X= 0 obeys

sin2 θT = K2
Y

1 − g0
. (17)

Forslund et al. (1975) studied the related problem where
transverse waves approach a density gradient from a vac-
uum (g0 = 0) and generate Langmuir waves. In this case,
sin θT =KY .

An expression for EX(X) analogous to equation
(13) is obtained using the relations ∇ × Elong = 0 and
∇ · Etrans = 0, where Elong is the longitudinal part of E
(Langmuir waves) and Etrans is the transverse part of E
(transverse EM waves):

EX(X) = KLX

KY
[exp(iKLXX)− RL exp(−iKLXX)]

+ KY

KTX
TT exp(−iKTXX). (18)

From equations (13) and (18), the coefficients RL and TT
can be expressed in terms of the fields atX = 0−, yielding
(Means et al. 1981)

RL = KTXKY

KLXKTX +K2
Y

×
[
−EX(0−)+ KY

KTX
EY (0−)+ KLX

KY
− KY

KTX

]
,

(19)

TT = KTXKY

KLXKTX +K2
Y

×
[
EX(0−)+ KLX

KY
EY (0−)− 2

KLX

KY

]
. (20)

Boundary conditions for the derivatives of EX and EY
are then obtained by differentiating the expressions (13)
and (18) and evaluating them at X= 0−:

dEX(0−)
dX

= i

[
K2
LX

KY
(1 + RL)−KYTT

]
, (21)

dEY (0−)
dX

= i [KLX(1 − RL)−KTXTT ] . (22)

The other boundary conditions are that the wave fields are
evanescent beyond the mode conversion point; i.e.

EX(X∞) = EY (X∞) = 0 , (23)

where X∞ �Xmc. The differential equations (11) and
(12) with boundary conditions (21), (22), and (23) are
solved numerically as a boundary value problem, using
an adaptive shooting method, with EX(0) and EY (0) as
the undetermined parameters.
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2.2 Total Langmuir Wave Reflection

Equations (16) and (17) impose a maximum angle θLmax

between the Langmuir wave and the density gradient for
mode conversion to occur; i.e. sin2 θT ≤ 1 implies that
K2
Y /(1 − g0)≤ 1, so that

θLmax = sin−1
√
γβ. (24)

If θL ≥ θLmax, then no transverse waves are generated.
In this case, TT = 0 in equations (13) and (18), and the
boundary conditions (21) and (22) are replaced with

dEX(0−)
dX

= i
K2
LX

KY
(1 + RL), (25)

dEY (0−)
dX

= iKLX(1 − RL), (26)

for the reflection coefficient RL =EY (0−)− 1.

3 Mode Conversion Efficiency

The mode conversion efficiency ε is defined as the propor-
tion of incoming Langmuir wave energy that is converted
into transverse wave energy, satisfying ε= 1 − |RL|2. In
order to compare our results with other authors, it is nec-
essary to consider two cases: g0< 1 (but not ≈1) and
g0 ≈ 1.

3.1 Case 1: g0< 1 (but not ≈ 1)

Forslund et al. (1975) showed that for L� 1, the mode
conversion efficiency ε is a function of only one parameter,
q, which is effectively a combination of the inhomogeneity
length scale, and the incident wave angle, with

q = L2/3K2
Y . (27)

It is important to note that Forslund et al. (1975) treated
the specific problem of transverse waves incident from a
vacuum, with g0 = 0.

Numerical solutions of the above equations show that,
more generally, the mode conversion efficiency ε depends
primarily on two variables q and g0. The mode conversion
efficiency decreases to zero as the Langmuir incidence
angle approaches the maximum allowed value θL max,
defined in equation (24). We denote the value of q at
which ε= 0 as q0, which can be found by substituting
K2
Y = 1 − g0 (from sin2 θT →1 in (17)) into equation (27),

yielding
q0 = (1 − g0)L

2/3. (28)

The primary effect of increasing g0 is to lower the cut-
off value q0, while increasing the peak value of ε at
q <q0. Then, ε depends primarily on q, with the func-
tional form found by Forslund et al. (1975) for q0 � 1,
corresponding to

L � (1 − g0)
−3/2. (29)

For g0 less than but not close to unity, this condition is only
marginally more restrictive than Forslund et al.’s condition

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0

q

ε

Figure 2 Mode conversion efficiency ε as a function of q =
L2/3K2

Y for g0 = 0.5, L= 2000, ωp0 = 2 × 105 m s−1, γ = 3, and
β = 2 × 10−5.

L� 1. The condition g0< 1 corresponds to the situation
where the incoming Langmuir wave frequency is greater
than, but not close to, the local plasma frequency. For
illustrative purposes, we choose g0 = 0.5, corresponding
to ωL = √

2ωp. Note that this is not a physically realistic
choice, because Langmuir waves are strongly damped at
this frequency.

Typical solar wind values for the other parameters are
used throughout this paper: ωp0 = 2 × 105 m s−1, γ = 3,
and β = 2 × 10−5 (corresponding to a thermal speed
Ve = 1.3 × 106 m s−1). Figure 2 shows the mode con-
version efficiency ε as a function of q =L2/3K2

Y for
L= 2000. This is comparable to the mode conversion
efficiency curve for g0 = 0 presented by Forslund et al.
(1975), and later by Means et al. (1981), Hinkel-Lipsker
et al. (1992), and many other authors. The significance of
Figure 2 is that ε is solely a function of q; it is only very
weakly dependent on plasma temperature and the initial
wave to plasma frequency ratio (g0). In this regime, there
is an optimal value of q for maximum mode conversion
to transverse waves; namely, for q = 0.5, the maximum
conversion efficiency εmax ≈ 50%.

3.2 Case 2: g0 ≈ 1

For g0 close to unity, the condition (29) differs markedly
from the Forslund conditionL� 1. To illustrate this point,
we choose typical parameters for beam-driven Langmuir
waves in the solar wind, with g0 = (1 + 3V 2

e /v
2
b)

−1,
where vb is the electron beam speed. For a charac-
teristic beam speed vb = 3.25 × 107 m s−1 ≈ 0.1c and
Ve = 1.3 × 106 m s−1 (g0 = 0.995), and L= 2000, equa-
tion (28) yields q0 = 0.79. Thus q0< 1, so that condition
(29) is not satisfied and the mode conversion efficiency
curve (Figure 3) now differs markedly from Figure 2. In
particular, the maximum conversion efficiency occurs at a
lower value of q and the maximum conversion efficiency
is significantly higher than 50%, with εmax ≈ 70%. More-
over, mode conversion only occurs for q ≤ q0 = 0.79. This
is a more restrictive region of parameter space than pre-
viously calculated (e.g. Hinkel-Lipsker et al. 1992; Yin &
Ashour-Abdalla 1999).
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4 Mode Conversion and Total Reflection

For typical solar wind parameters, the maximum angle
between the incident Langmuir wave and the density

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q

*

#

ε

Figure 3 Mode conversion efficiency ε as a function of q, for the
same parameters as Figure 2, except with g0 = 0.995. The efficiency
curve from Figure 2 is shown as a dashed line for comparison.
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Figure 4 Electric field strengths Re[EX(X)] and Re[EY (X)], and
the relative phase δ(X)= tan−1[Re(EY (X)/EX(X)), Im(EY (X)/
EX(X))] plotted at regular points, for q = 0.35 in Figure 3. The drift
in relative phase is illustrated over several Langmuir wavelengths
for 5<X< 10.

gradient for mode conversion to proceed satisfies
θL max � 1◦. Total Langmuir wave reflection occurs
for angles θL greater than this value. Hence, during
mode conversion, the ratio of electric field strengths
perpendicular and parallel to the density gradient is
small, with |EY |/|EX| ≈ sin θL � 1. This is evident in
Figure 4, which displays the electric fields Re[EX(X)]
and Re[EY (X)] for the same parameters as Figure 3,
and q = 0.35 (marked with an ∗ in Figure 3). The func-
tional dependence of the total electric field on Y and t
is the same in both the X and Y directions and is not
displayed in Figure 4. The bottom panel plots the rela-
tive phase δ between EX and EY at evenly distributed
points. The relative phase rotates through −π to π on
the Langmuir wavelength scale, as shown in Figure 4 by
connecting the points for the range 5<X< 10. Typically,
the relative phase 〈δ〉 averaged over several Langmuir
wavelengths is nonzero, and drifts steadily in X on the
transverse wavelength scale (e.g. the band drifting from
δ≈π/4 to 0 as X moves from −20 to 0). The electric
field EY perpendicular to the density gradient is predomi-
nantly in the transverse mode, with transverse wavelength
*X= 2π/KX ≈ 2π/

√
1 − g0 ≈ 90 for these parameters.
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Figure 5 Electric field strengths Re[EX(X)] and Re[EY (X)], and
the relative phase δ(X), for q = 0.8 in Figure 3.
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Figure 5 displays the fields and the phase shift δ for the
same parameters as Figure 4, except with q = 0.8 (>qmax,
marked with a # in Figure 3), which is in the regime of
total Langmuir wave reflection. This is evident in Figure 5
because there is no transverse wave generated, and there
is a constant phase shift (δ= ±π/2) betweenEX andEY .

Comparing Figures 4 and 5, we can now answer the
question of whether it is possible to identify mode con-
version events in spacecraft Langmuir waveform data
(assuming a configuration similar to the TDS instrument
on WIND). Note that the 17 ms sample time of the TDS
instrument on the WIND spacecraft corresponds to a range
of X of*X� 3 for the parameters used here, assuming a
solar wind speed of 400 km s−1. A drifting relative phase,
with 〈δ〉 �=π/2, which is symptomatic of mode conver-
sion, will only be detected when one (but not both) of
the antennas is aligned perpendicular to the density gra-
dient. The reason is that if the spacecraft is not in this
configuration, then the relatively weak EY signal will
be overwhelmed by the EX signal so that both antennas
will primarily detect the EX signal, and zero phase shift
will be measured between the two antennas. As a result,
the vast majority of mode conversion events will go
undetected. Strong evidence for mode conversion would
be provided by events in which the electric field strength
is significantly higher on one antenna than the other, with
a drifting average relative phase 〈δ〉.

In addition to reflection and mode conversion,
Langmuir waves can be trapped and undergo tunnelling
into density wells. These phenomena require investiga-
tion of non-monotonic density profiles, which will be the
subject of further study.

5 Conclusion

In this paper, we have examined the process of linear
mode conversion of Langmuir waves in an unmagnetised
plasma. The main conclusions are: (i) The mode conver-
sion efficiency is a function of two parameters, q and g0,
where q is a combination of the wavenumber perpendic-
ular to the density gradient KY and the inhomogeneity
length scale L, and g0 =ω2/ω2

p, for wave frequency ω
and plasma frequency ωp0 outside the density gradient.
The dependence on g0 is important for Langmuir waves
under solar wind conditions since g0 ≈ 1, yielding higher

mode conversion efficiencies over a more restricted range
of q than earlier estimates for which the mode conversion
efficiency is solely a function of q. (ii) For solar wind
conditions, mode conversion occurs only for Langmuir
waves propagating nearly parallel to the density gradient
(with θL � 1◦). When mode conversion occurs, the relative
phase between the components of electric field parallel
and perpendicular to the density gradient drifts, and the
parallel electric field greatly exceeds the perpendicular
field. Because of the weak electric field perpendicular to
the density gradient, these signatures of mode conversion
will only be detected by orthogonal antennas (e.g. the TDS
instrument on WIND) if one of the antennas is aligned per-
pendicular to the density gradient. For this reason, most
mode conversion events cannot be detected in this way.
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