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Abstract: The hydromagnetic structure of a neutron star accreting symmetrically at both magnetic poles
is calculated as a function of accreted mass, Ma, starting from a polytropic sphere plus central mag-
netic dipole (Ma = 0) and evolving the configuration through a quasistatic sequence of two-
dimensional, Grad–Shafranov equilibria as Ma increases. It is found that the accreted material
spreads equatorward under its own weight, compressing the magnetic field into a thin boundary
layer and burying it everywhere except in a narrow, equatorial belt. The magnetic dipole moment
of the star is given by µ= 5.2 × 1024(B0/1012.5 G)1.3(Ṁa/10−8 M� yr−1)0.18(Ma/M�)−1.3 G cm3,
and the fractional difference between its principal moments of inertia is given by ε = 2.1 × 10−5

(B0/1012.5 G)0.27(Ṁa/10−8 M� yr−1)0.18(Ma/M�)1.7, forMa in the range 10−5 �Ma/M� � 10−1, where
B0 is the pre-accretion magnetic field strength, and Ṁa is the accretion rate.
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1 Introduction

Neutron stars with a history of mass transfer from a
binary companion have systematically lower magnetic
dipole moments µ than neutron stars with no accre-
tion history (Bhattacharya & Srinivasan 1995). There are
five distinct classes of low-µ objects: (i) binary radio
pulsars with a high mass companion, such as another
neutron star or a carbon/oxygen white dwarf, which have
µ= 1027.5−28.5 G cm3; (ii) binary radio pulsars with a
low mass companion, such as a helium white dwarf
or sub-stellar remnant, which have µ= 1026−27 G cm3;
(iii) isolated millisecond pulsars (MSPs), which have
µ= 1026−27 G cm3; (iv) accreting neutron stars in low
mass X-ray binaries (LMXBs), the likely progenitors of
MSPs (Chakrabarty & Morgan 1998; Wijnands & van der
Klis 1998), with µ< 1027 G cm3; and (v) some pulsars
in globular clusters. In this paper, we restrict attention to
low-µ neutron stars in the Galactic disk, because it is hard
to accurately infer µ and the rate and duration of accre-
tion for objects in globular clusters, with their complicated
kinematics and evolutionary histories.

All the above objects lie to one side of the spin-
up line for magnetised equilibrium rotators (Ghosh &
Lamb 1979), corrected for accreted mass (Wijers 1997) —
qualitative evidence that some kind of accretion induced
magnetic field reduction is taking place. Indeed, obser-
vations and evolutionary calculations suggest that µ

decreases monotonically with the mass of accreted mate-
rial, Ma, down to a floor µmin ≈ 1026 G cm3: one finds
an inverse correlation between µ and age in high mass
X-ray binaries (HMXBs) and binary radio pulsars with

∗ Also at: Department of Astronomy, 601 Campbell Hall, University
of California, Berkeley, CA 94720, USA.

high mass companions (Taam & van den Heuvel 1986),
and a direct correlation between µ and orbital period Porb

in binary radio pulsars with circular orbits and low mass
companions (van den Heuvel & Bitzaraki 1995). A sim-
ple power law scaling between µ and Ma was proposed
by Shibazaki et al. (1989) and subsequently disputed by
Wijers (1997). It is clear that µ does not diminish spon-
taneously in the absence of accretion, as shown by the
existence of MSPs with cold, and therefore old, white
dwarf companions (Kulkarni 1986), cyclotron-line mea-
surements in LMXBs of known age (Verbunt, Wijers, &
Burm 1990), population syntheses of isolated radio pulsars
with no accretion history, incorporating survey selection
effects (Bhattacharya et al. 1992; Hartman et al. 1997), and
calculations of the Ohmic decay time in the crust of a neu-
tron star (Sang & Chanmugam 1987; Urpin & Muslimov
1992; Konar & Bhattacharya 1998).

Three distinct mechanisms of accretion-induced field
reduction have been canvassed in the literature to date:
accelerated Ohmic decay, vortex–fluxoid interactions,
and magnetic screening or burial. Accelerated Ohmic
decay occurs when the electrical conductivity of the
crust is substantially reduced by accretion-induced heating
before the crust sinks under the weight of the overbur-
den and assimilates into the superconducting core of the
star (Urpin & Geppert 1995; Urpin & Konenkov 1997;
Konar & Bhattacharya 1997, 1998). When applied to
LMXBs and HMXBs, including both the propeller and
Roche-contact phases of mass transfer, the mechanism
reproduces the observed correlation between µ and Porb

(Konar & Bhattacharya 1998) and predicts a populous tail
of MSPs with rotation periods P < 1.5 ms (Possenti et al.
1998). Sengupta (1998) considered general relativistic
corrections.
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Neutron vortices and proton fluxoids in the superfluid,
superconducting core of a neutron star are thought to inter-
act via Magnus and spin-polarisation forces (Muslimov &
Tsygan 1985; Srinivasan et al. 1990; Bhattacharya &
Srinivasan 1995). When the star spins down during the
propeller phase of accretion, vortices and fluxoids migrate
together out of the core and into the heated crust, where
there is Ohmic decay (Srinivasan et al. 1990). A high con-
centration of impurities is needed to attain µmin (Konar
& Bhattacharya 1999). The vortex–fluxoid interaction
may also exert stresses that crack the crust into tectonic
plates which shuffle over the surface with magnetic field
lines anchored to them (Ruderman 1991a,b; Cheng &
Dai 1997), altering µ and forcing the rotation and mag-
netic axes of MSPs to (counter) align (van den Heuvel &
Bitzaraki 1995; Chen, Ruderman, & Zhu 1998).

Magnetic screening takes place when the currents
generating the original magnetic field of the star are par-
tially neutralised by crustal currents induced by accretion.
Neutralising currents can arise from an inverse thermo-
electric battery (Blondin & Freese 1986; cf. Blandford,
Applegate, & Hernquist 1983), or if the accretion flow
breaks up into diamagnetic blobs that strike the polar caps
(Arons & Lea 1980; Zhang, Wu, & Yang 1994; Burderi,
King, & Wynn 1996); the latter mechanism was invoked
by Burderi et al. (1996) to account for the discrepancy
between the spin-down age of PSR J1012+5307 and the
cooling age of its white dwarf companion. Neutralising
currents can also be induced by burying the field under
a spherical accretion flow (Romani 1990, 1993; Toropin
et al. 1999) or a flow channelled onto the polar caps
(Blandford, de Campli, & Königl 1979; Hameury et al.
1983; Brown & Bildsten 1998; Cheng & Zhang 1998;
Sahrling 1998; Litwin, Brown, & Rosner 2001), perhaps
in tandem with accelerated Ohmic decay (Romani 1990,
1993; Konar & Bhattacharya 1997, 1998; Sahrling 1998;
Cumming, Zweibel, & Bildsten 2001).

In this paper, we extend previous treatments of mag-
netic burial in three directions: (i) we allow explicitly for
equatorward spreading of accreted material and frozen-
in magnetic flux, so that high-order magnetic multipoles
can develop; (ii) we consider realistic amounts of accreted
mass, 10−5M� � Ma � 10−1M�; and (iii) we calculate
the hydromagnetic structure of the star self-consistently by
solving simultaneously for the density and magnetic field
under the action of gravity and the Lorentz force. Previous
treatments either prescribed a dipolar magnetic field and
spherically symmetric density profile at all stages of accre-
tion (Romani 1990, 1993; Konar & Bhattacharya 1997,
1998), or else permitted equatorward spreading in princi-
ple but did not evolve the field to its ultimate, highly dis-
torted state because of numerical difficulties, instead stop-
ping at Ma � 10−10M� (Hameury et al. 1983; Brown &
Bildsten 1998; Litwin et al. 2001). Some physics that
appears in earlier works is intentionally neglected in this
paper. Our model star is taken to be perfectly conducting;
Ohmic decay is not incorporated self-consistently, though
its effect is estimated semiquantitatively (cf. Romani

1990, 1993; Urpin & Geppert 1995; Urpin & Konenkov
1997; Konar & Bhattacharya 1997, 1998). We also neg-
lect elastic stresses in the crust (cf. Romani 1990, 1993;
Cheng & Zhang 1998).

The paper is structured as follows. In Section 2 and
Appendix A, the theory of equatorward hydromagnetic
spreading is formalised and then solved by a boundary
layer method to obtain the magnetic dipole and mass
quadrupole moments of the star as a function of Ma. In
Section 3, processes that may limit or disrupt equatorward
spreading, such as Ohmic dissipation and hydromagnetic
instabilities, are identified and briefly discussed. In a forth-
coming paper, we will test the theoretical µ versus Ma

relation derived here — which involves just two unknown
parameters, the accretion rate Ṁa and the initial magnetic
field B0 — against observational data for different kinds
of low-µ neutron stars. We will also calculate the ampli-
tude of gravitational waves emitted by the rotating mass
quadrupole. Preliminary estimates suggest that the sig-
nal from objects with Ma � 10−1M� may be detectable
by gravitational wave interferometers under construction
(Melatos & Phinney 2000).

2 Theory of Equatorward Hydromagnetic
Spreading

In this section, we analyse the evolution of the magnetic
field of a neutron star accreting symmetrically at its mag-
netic poles, as it passes through a quasistatic sequence of
hydromagnetic equilibria, from a dipole to an equatorially
flaring, tutu-like configuration. A qualitative discussion is
given in Section 2.1 to motivate the quantitative theory
that follows. We write down the equation of hydro-
magnetic force balance governing each equilibrium state
(Section 2.2), solve it analytically by an approximate
boundary layer technique (Section 2.3), and compute the
magnetic dipole and mass quadrupole moments of the star
(Sections 2.4–2.6).

2.1 Formation of an Equatorial Magnetic Tutu:
A Qualitative Picture

Prior to accretion, a neutron star in hydromagnetic equi-
librium can be idealised as a spherical, Lane–Emden
polytrope threaded by a dipolar magnetic field sustained
by point currents at the centre of the star. Let the mass,
radius, and polar magnetic field strength of the star be
M∗, R∗, and B0 respectively. We consider accretion onto
this initial configuration from a disk situated in the plane
of the magnetic equator (Ghosh & Lamb 1979). Accreting
material is constrained to flow to the stellar surface along
polar magnetic field lines that close outside the inner disk
boundary, at radiusRa. North–south symmetry is assumed
for simplicity.

During the early stages of accretion, material accu-
mulates on the polar cap, forming a mountain confined
magnetically inside the polar flux tube. The distribution
of matter and magnetic flux in the mountain can be cal-
culated exactly by Grad–Shafranov methods (Uchida &
Low 1981; Hameury et al. 1983; Brown & Bildsten 1998;
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Figure 1 Schematic diagram (not to scale) of the magnetic field
of a neutron star during polar cap accretion, showing one quad-
rant of a meridional cross-section. UVW is the stellar surface after
sinkage of the accreted material UVSR; it almost coincides with the
pre-accretion surface. RSTQP is the original outer layer of the star,
buried by the accreted overburden. OPQ is the undisturbed interior.
The magnetic field is undistorted in OPQ (line tying), moderately
distorted in RSTQP, and highly distorted in UVSR due to burial. The
original dipole field (dashed curves) is dragged equatorward and
‘trampled’ beneath the leading edge SV, flaring out from the notch
VSTW in a tutu-like configuration and tending to a dipole at large
distances. The magnetic tension of the compressed flux in the notch
VSTW balances the hydrostatic pressure at the base RS of the accreted
overburden. The layer of compressed flux in UVSR, running nearly
parallel to UV, is typically thinner than UVSR. It is located along
either UV or RS, depending on the role played by Ohmic dissipation
and hydromagnetic instabilities.

Litwin et al. 2001). Once more than ∼10−5M� of mate-
rial has been accumulated (for B0 = 1012−13 G; see
Section 2.3 and cf. Brown & Bildsten 1998; Litwin et al.
2001), the hydrostatic pressure gradient at the base of
the mountain exceeds the magnetic tension of the polar
flux tube, the magnetic field buckles, and the base of the
mountain spreads laterally towards the equator, dragging
frozen-in magnetic flux along with it.1

Figure 1 illustrates schematically, in cross-section,
the distribution of matter and magnetic flux for Ma 

10−5M�. As the accreted layer UVSR spreads equator-
ward, the leading face SV runs over dipolar magnetic field
lines (dashed curves), burying them underfoot. Magnetic
flux is compressed into a narrow layer along RS, emerging
from SV into the notch VSTW. (The notch is not evac-
uated in reality; it is filled by material welling up from
below.) Force balance between the magnetic tension of
the compressed flux and the pressure gradient at the base
of UVSR establishes the equilibrium position of SV. Field
lines flare outwards from the notch over a characteris-
tic distance ST, becoming dipolar far from the star; the

1Litwin et al. (2001) estimate that the field buckles for Ma � 10−12M�,
the threshold depending on the ratio of the polar cap radius to the pressure
scale height. However, they do not include an important effect: as the
accreted material spreads equatorward, it compresses the magnetic flux
outside the polar cap, increasing the external magnetic stress and stif-
fening the polar flux tube against significant buckling forMa � 10−5M�
(Section 2.3).

configuration resembles a ballerina’s tutu. Flux conserva-
tion implies that the magnetic field strength in the notch
exceeds B0 by a factor |RS| : |ST | 
 1, but the overall
dipole moment of the star is reduced by |ST | : |RS| from
its original value by screening currents (Section 2.4).

The layer of compressed magnetic flux is typically
thinner than UVSR; we show in Section 2.3 that it
is ≈ 6 × 102 cm thick for Ma = 10−1M�, compared to
|SV | ≈ 3 × 104 cm. A question then arises: where exactly
is the flux layer located? If the leading face ofSV runs over
magnetic field lines as it moves equatorward, and if flux
freezing is respected, the compressed flux must lie along
RS. We call this buried configuration Type A. However, a
Type A layer is buoyant and hence susceptible to hydro-
magnetic instabilities of Parker or interchange type. A full
treatment of such instabilities lies outside the scope of this
paper. Qualitatively, however, they act to raise the com-
pressed flux to the surface, in the form of mushroom-like
‘magnetic blisters’ (Parker) or ‘slabs’ (interchange). We
call this surface configuration Type B. In this paper, we cal-
culate the structure of both Type A and B configurations,
obtaining similar results in both cases.

The magnetic field is partially distorted in a layer of
mass ∼Ma beneath UVSR, drawn as RSTQP in Figure 1.
Below this layer, the field is undisturbed; magnetic field
lines are effectively anchored along PQ. This boundary
condition, called line-tying, is a feature of models of mag-
netic loops in the solar corona (e.g. Low 1980; Zweibel &
Hundhausen 1982) as well as of earlier work on accret-
ing neutron stars (Uchida & Low 1981; Hameury et al.
1983; Brown & Bildsten 1998; Litwin et al. 2001). Note
that PQ is not the crust–core boundary; we do not dis-
tinguish between the crust and core in this paper, nor do
we model the submergence and subsequent replacement
of the pre-accretion crust.

2.2 Equations of Hydromagnetic Force Balance

The accreted matter adjusts to hydromagnetic equilibrium
on the local Alfvén time scale, τA = L/vA � 4 × 10−2 s,
where L � 5 × 104 cm is the thickness of the compressed
flux layer (calculated a posteriori in Section 2.3) and
vA = (B2/4πρ)1/2 � 1×106 cm s−1 is the Alfvén speed.
The Alfvén time scale is much shorter than the flow time
scale, τf = 4πR2∗ρL/Ṁa � 3×103 yr (Brown & Bildsten
1998), and the accretion time scale, τa =Ma/Ṁa, for
ρ = 1 × 1011 g cm−3 and Ṁa = 1 × 10−8M� yr−1. Hence
the spreading of the accreted matter is well described by
a quasistatic sequence of hydromagnetic equilibria, pro-
vided that Ohmic dissipation is slow (Section 3.1) and the
equilibria are not disrupted by hydromagnetic instabilities,
e.g. Parker and interchange modes, on the time scale τA

(Section 3.2).
The hydromagnetic structure of a neutron star in

equilibrium is governed by the force equation

−grad P − ρ grad � + (4π)−1(curl B) × B = 0. (1)

In (1), B(x) and ρ(x) denote the magnetic field strength
and mass density respectively, the gravitational potential
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�(x) is determined by ρ(x) through Poisson’s equa-
tion, ∇2�= 4πGρ, and the scalar pressure P(x) is
related to ρ(x) by an equation of state, taken here to
be polytropic, i.e. P =Kρ� . No distinction is drawn
between accreted material and the original stellar mate-
rial. Hydromagnetic distortion of the star occurs mainly
in the outer crust, where the electrons are degenerate
and relativistic yet the nucleon density is below neutron
drip (ρ < 4 × 1011 g cm−3). We therefore take � = 1.3 in
what follows. Near neutron drip, � decreases sharply to
� ≈ 0.35 then rises with depth to � ≈ 1.7 at nuclear den-
sities (Shapiro & Teukolsky 1983, p. 196; Lai 1994). We
find that our key results are insensitive to �.

Hydrostatic, gravitational, and Lorentz forces are
included in (1). Elastic stresses developed in the crys-
talline outer crust are neglected. We show, a posteriori,
that a modest amount of accretion (Ma � 2 × 10−3M�;
see Section 2.4) compresses the magnetic field enough
to exceed locally the yield threshold By = 4 × 1013

ZA−2/3(ε/10−2)1/2(ρ/1011 g cm−3)2/3 G (Romani 1990),
above which magnetic stresses dominate elastic stresses;
here, ε is the strain angle and Z and A are the charge
and mass number of the crustal ions. We also neglect
forces arising from superfluid, superconducting behaviour
at densities above neutron drip, e.g. the Magnus force
exerted on neutron vortices, which produces cyclotron–
vortex waves when coupled to the Lorentz force (Mendell
1998). Neglecting such forces is justified because the mag-
netic field is distorted primarily in the nonsuperfluid outer
crust; moreover, it can exceed ∼1015 G locally, destroying
superconductivity [fluxoid separation � London depth;
see Mendell 1998, equations (3) and (8)].

Let (r, θ, φ) be spherical polar coordinates oriented so
that θ = 0 defines the symmetry axis of the pre-accretion
magnetic field. Then Bφ is zero initially. Suppose, for sim-
plicity, that material accretes symmetrically about this axis
at all times, so that there is no toroidal flow. [Basko &
Sunyaev (1976) studied asymmetric accretion caused by
warping of the polar flux tube when the magnetic axis
is not perpendicular to the plane of the accretion disk.]
Flux freezing then guarantees that B remains axisymmet-
ric at all times, with Bφ = 0, and there exists a scalar flux
function ψ(r, θ) that generates B via

B = (r sin θ)−1grad ψ(r, θ) × êφ. (2)

We define ψ∗ =ψ(R∗, π/2) and ψa =ψ(Ra, π/2) to be
the hemispheric and polar cap fluxes respectively. Axi-
symmetric evolution with Bφ = 0 is possible only if the
pre-accretion field is purely poloidal. In reality, a toroidal
field component can be generated in many ways, e.g. by
a convective dynamo in the progenitor star (Thompson &
Duncan 1993) or by a thermoelectric battery (Blandford
et al. 1983). The accreting material is assumed to be
unmagnetised, which in general is unrealistic (Uchida &
Low 1981).

Upon projecting (1) along B and using B · grad ψ = 0,
we obtain the generalised Lane–Emden equation[

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]

×
[(

K�

� − 1

)
ρ�−1 − F(ψ)

]
+ 4πGρ = 0. (3)

Upon projecting (1) along grad ψ and substituting (2), we
obtain the Grad–Shafranov equation

4πρr4 sin2 θ
dF (ψ)

dψ
+ r2 ∂

2ψ

∂r2

+ sin θ
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
= 0. (4)

To calculate the equilibrium state, one needs to solve (3)
and (4) simultaneously for ρ(r, θ) and ψ(r, θ), subject
to boundary conditions and a choice of the arbitrary
functional F(ψ).

The physical meaning ofF(ψ) deserves comment. For-
mally, F(ψ) is arbitrary. In general, however, the solution
of (3) and (4) with an arbitrary choice of F(ψ) yields an
equilibrium state that cannot be reached from our specified
initial state by a continuous deformation of flux surfaces
in a way that respects flux freezing and mass continu-
ity. Indeed, for certain choices of F(ψ), the sequence of
equilibria terminates when Ma increases beyond a critical
value; no solution of the prescribed form exists, and there
is a loss of equilibrium (Klimchuk & Sturrock 1989 give
a force-free example). This happens because (1) does not
contain the evolutionary information in the induction and
mass continuity equations. A supplementary constraint on
the mass-to-flux ratio does fix F(ψ) uniquely: one solves
(3) and (4) subject to the condition (Mouschovias 1974;
Shu 1992, p. 320)

2π
∫
C

ds ρ[r(s), θ(s)]
|B[r(s), θ(s)]|

=
{
(dM/dψ)0 + Ma/ψa for 0 ≤ ψ ≤ ψa

(dM/dψ)0 for ψ ≥ ψa
, (5)

where C is the curve ψ[r(s), θ(s)] =ψ , (dM/dψ)0 is
the mass-to-flux ratio of the spherical polytrope plus
central dipole prior to accretion, and the accreted mass
Ma is distributed uniformly within the polar flux tube
0 ≤ψ ≤ψa. Note that the mass-to-flux constraint is not
conservative in problems involving accretion.

Mouschovias (1974) sets out an iterative scheme for
solving (3), (4), and (5) numerically. A full implementa-
tion of this scheme lies outside the scope of this paper
and is left to future work; numerical difficulties are antic-
ipated, because the solution features steep gradients in ρ

andψ (Section 2.3). We compromise by choosingF(ψ) in
such a way as to qualitatively (though not quantitatively)
satisfy the mass-to-flux constraint (5) while simulta-
neously yielding a solution characterised by equatorward
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hydromagnetic spreading as Ma increases. Our particular
choice,

F(ψ) = F0

{
1 − (1 − ψ/ψa)

2 for 0 ≤ ψ ≤ ψa

1 for ψ ≥ ψa
, (6)

where F0 is a constant to be determined, ensures that
the magnetic field is force-free (dF/dψ = 0) outside the
polar flux tube 0 ≤ψ ≤ψa; flux freezing prevents accreted
material from crossing flux surfaces to reachψ ≥ψa. It is a
standard procedure to guess F(ψ) when modelling struc-
tures in the solar corona, e.g. prominences and arcades
(Dungey 1953; Low 1980; Hundhausen, Hundhausen, &
Zweibel 1981; Zweibel & Hundhausen 1982; Webb 1988;
Sozou 1998), as well as accretion onto compact objects
(Uchida & Low 1981; Hameury et al. 1983; Brown & Bild-
sten 1998; Litwin et al. 2001). Čadež, Oliver, & Ballester
(1994) used an ad hoc pressure balance condition at a
simple, fixed boundary to determine, rather than guess,
F(ψ).

2.3 Boundary Layer Solution

Prior to the onset of accretion, the star can be modelled
as a spherical polytrope threaded by a dipolar mag-
netic field. Equations (3) and (4) are satisfied exactly by
ψ(r, θ)=ψ∗(r/R∗)−1 sin2 θ and ρ(r, θ)= ρ0f (r̃)3 for
Ma = 0, where we define ρ0 = 13M∗/R3∗, r̃ = r/r0, and
r0 = 0.14R∗, and the dimensionless function f (r̃) satis-
fies the Lane–Emden equation (r̃2f ′)′ + r̃2f 3 = 0, with
boundary conditions f (0)= 1 and f ′(0)= 0.

The above solution, which is force-free except at the
(ignorable) central singularity, remains a good approxi-
mation to the exact equilibrium state once accretion com-
mences, provided that the accreted mass is within the range
10−5M� �Ma � 10−1M�. This is because, for ψ ≥ψa,
the terms featuring F(ψ) in (3) and (4), describing depar-
tures from a force-free state, areMa/M∗ times smaller than
the other terms and can be neglected. However, the force-
free solution is invalid for 0 ≤ψ ≤ψa, because the first
term in (4) increases to balance the second term. The terms
are in the ratio Qa(r/'r)2, with Qa = 0.25GM2∗/ψ2

a ,
implying that the flux surfaces 0 ≤ψ ≤ψa are compressed
within a boundary layer of thickness 'r/r ∝ Q

−1/2
a � 1.

The location of the boundary layer is uncertain in
the context of the present calculation, as we do not
constrain the evolution through (5). Two generic possi-
bilities are identified qualitatively in Section 2.1. In a
Type A configuration, the boundary layer lies along RS
in Figure 1, beneath the accreted layer UVSR. Flux freez-
ing is respected during the quasistatic evolution, and it is
assumed that there are no disruptive hydromagnetic insta-
bilities operating on the Alfvén time scale τA. In a Type B
configuration, the boundary layer lies along the surface of
the star, i.e.ψ = 0 alongUV in Figure 1. It is assumed that
Ohmic diffusion (Section 3.1) and hydromagnetic insta-
bilities (Section 3.2) raise the compressed magnetic flux
0 ≤ψ ≤ψa in a stratified way. An alternative scenario —
that the final state is disordered, with the compressed

magnetic flux sprouting to the surface in ‘blisters’ — will
be studied in future work. Note that the location of the
buried flux layer is also uncertain in existing theories of
spherical burial, which do not track instabilities on the time
scale τA and artificially force the magnetic field to be dipo-
lar at all times (Romani 1990; 1993; Konar & Bhattacharya
1997).

Hydromagnetic equilibria of Types A and B are con-
structed in Appendix A by solving (3), (4), and (6)
approximately. We describe the Type B solution here
by way of illustration. It has three zones. (i) Through-
out most of the stellar volume, where ψ(r, θ)≥ψa, we
findψ(r, θ)=ψ∗(r/R∗)−1 sin2 θ andρ(r, θ)= ρ0[f (r̃)+
δa]3, with δa = 0.15Ma/M∗. (ii) In the boundary layer
0 ≤ψ(r, θ)≤ψa, whose thickness L is given by L/R∗ =
0.021Q−1/2

a δ−2
a , we find

ψ(r, θ) = 2−1/2ψa(L/R∗)−1(1 − r/R∗) sin θ, (7)

ρ(r, θ) = ρ0δ
3
a [1 − (1 − ψ/ψa)

2]3, (8)

a good approximation for ψ �ψa and wherever the
∂/∂θ terms in (4) can be ignored. (iii) Near θ =π/2,
where the ∂/∂θ terms are significant, a second bound-
ary layer forms, of characteristic dimensions 'r =L

and 'θ = 0.14L/R∗, enabling (7) to match smoothly to
ψ(R∗, π/2)=ψ∗ and ρ(R∗, π/2)= ρ0δ

3
a . The magnetic

flux surfaces ψa ≤ψ ≤ψ∗ are magnetically disconnected
from the accretion disk and free of accreted material. Note
that the solutions in zones (i)–(iii) join together semi-
quantitatively but not exactly; it is hard to solve (3) and
(4) analytically with a free boundary (Biskamp 1993),
and a numerical solution is deferred to future work. A
restricted, linear version of the problem — where the
gravitational potential is imposed, not derived from ρ —
was solved with Cauchy (line-tying) boundary conditions
by Uchida & Low (1981). A boundary layer treatment
of unmagnetised accretion and spreading, including rota-
tion and radiation effects, was carried out by Inogamov &
Sunyaev (1999).

An order of magnitude estimate of the thickness L of
the boundary layer can be obtained as follows. If the
hemispheric magnetic flux of the star, πR2∗B0, is com-
pressed into a layer of cross-sectional area 2πR∗L, flux
conservation implies that the field strength inside the
layer (and in the notch VSTW in Figure 1) is B1 =
B0R∗/2L. Upon balancing the magnetic stress in the
notch, B2

1/8π , against the hydrostatic pressure at S

in Figure 1, GM∗Ma/2πR4∗ , we obtain L/R∗ ≈ 2 ×
10−5(Ma/10−2M�)−1/2(B0/1012.5 G). This reproduces
exactly the scaling L∝ (Qaδa)

−1/2 corresponding to
Type A equilibria (see Appendix A) and is similar to the
Type B scaling L∝ (Qaδ

4
a )

−1/2, where the equation of
state of the surface layer plays an important role.

2.4 Magnetic Dipole Moment

The external magnetic field of the star, and the magnetic
dipole moment µ, are determined by the radial component
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Figure 2 Equatorial magnetic tutu of a star with Br(R∗, θ)=
cos θ/| cos θ | for | cos θ | ≤ 0.3, and Br(R∗, θ)= 0 for 0.3<

| cos θ | ≤ 1. The magnetic field lines correspond to field strengths
η|B(R∗, π/2)|, η= 0.1, 0.2, . . . , 0.9, ordered from pole to equator.
Multipoles l ≤ 15 are summed when calculating the field.

of the magnetic field at the stellar surface:

µ = 3

4
R3∗

∫ 1

−1
d(cos θ) cos θ Br(R∗, θ). (9)

We assume that currents are negligible in the region
r ≥R∗, so that the external field is potential. It is clear
from (7) thatBr(R∗, θ) is zero for |π/2−θ |>L/R∗ and is
large in the equatorial notch |π/2−θ |<L/R∗, where one
has Br ≈ ±6.9ψ∗R−1∗ L−1, with the positive and negative
signs corresponding to the northern and southern hemi-
spheres respectively. The resulting external field is plotted
in Figure 2 for the test case L/R∗ = 0.3, correspond-
ing to Ma/M∗ = 3.8 × 10−3(B0/1012.5 G)1/2(ψa/ψ∗)1/2.
The field geometry is distinctive, resembling the flaring
tutu of a ballerina in cross-section, with the flux near the
stellar surface concentrated in an equatorial band. For the
Type B configuration, (7) and (9) lead to

µ = 6.6 × 1023
(
ψa

ψ∗

) (
Ma

M∗

)−2 (
B0

1012.5 G

)2

G cm3.

(10)

A similar result, with µ∝M
−1/2
a and the same order of

magnitude, is obtained for the Type A configuration; see
Appendix A.

The magnetic dipole moment decreases as more
material accretes, even though the surface magnetic
field at the equator increases. This is because µ is dom-
inated by the surface magnetic field at the poles, which
is buried in the above scenario; µ therefore decreases
by the weighting factor cos θ ∼L/R∗. Note that, in the
notch VSTW in Figure 1, the magnetic field Br ≈ 22

(L/R∗)−1B0 is much greater than the original polar
field, although much less than the virial field 4 × 1018 G
(Lai & Shapiro 1991) for realistic amounts of accreted
material Ma �M�. Even a modest amount of accretion
(Ma � 2 × 10−3M�) compresses the magnetic field
enough to locally exceed the yield value By = 4 × 1013 Z

A−2/3(ε/10−2)1/2(ρ/1011 g cm−3)2/3 G (Romani 1990),
above which magnetic stresses dominate elastic stresses,
justifying our neglect of elastic stresses in (1).

2.5 Mass Quadrupole Moment

Matter is distributed asymmetrically in the compressed
flux layer.ψ(r, θ) varies as a function of θ through (7), and
the associated hydromagnetic stresses induce a conjugate
variation in ρ(r, θ) to satisfy (1). For a magnetic field of
the form (2), the star is biaxial, with principal moments of
inertia I1 = I2 <I3, and principal axis e1 directed along
the pre-accretion magnetic dipole m. The ellipticity of the
star, ε = (I1 − I3)/I1, is then given by

ε = πI−1
0

∫ 1

−1
d(cos θ)

∫ R∗

0
dr r4(3 cos2 θ − 1)ρ(r, θ)

(11)

= 8.0 × 10−6
(
ψa

ψ∗

) (
Ma

M∗

) (
B0

1012.5 G

)
(12)

for the Type B configuration, where I0 is the moment
of inertia of the undistorted star, and (12) is obtained
from (11) using (7) and (8). (The contribution to ε of
the notch VSTW is smaller by a factor ∼L/R∗ and can
be neglected.) An analogous result for the Type A config-
uration follows from (11), (A9), and (A10) and depends
on the depth as well as the thickness of the flux layer.

2.6 Dependence on Ṁa

The magnetic dipole momentµ is proportional to the polar
magnetic flux, ψa ∝ R−1

a , which is itself a function of µ
through Ra. In the Ghosh & Lamb (1979) model of the
magnetosphere of an accreting neutron star, the inner disk
boundary at Ra is located where the magnetic stress of the
stellar dipole (∝µ2) balances the inward ram pressure of
the disk (∝ Ṁa), viz.

Ra/R∗ = (
8µ4/GM∗R7∗Ṁ2

a

)1/7
(13)

= 2.7 × 102
( µ

1030 G cm3

)4/7

×
(

Ṁa

10−8 M� yr−1

)−2/7

. (14)

Upon combining (14) with (10), using ψa/ψ∗ = R∗/Ra,
we can solve for µ to obtain

µ

1030 G cm3
= 5.2 × 10−6

(
Ṁa

10−8 M� yr−1

)2/11

×
(

Ma

M�

)−14/11 (
B0

1012.5 G

)14/11

, (15)
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ψa

ψ∗
= 3.9

(
Ṁa

10−8 M� yr−1

)2/11

×
(

Ma

M�

)8/11 (
B0

1012.5 G

)−8/11

, (16)

and hence, from (12) and (16),

ε = 2.1 × 10−5
(

Ṁa

10−8 M� yr−1

)2/11

×
(

Ma

M�

)19/11 (
B0

1012.5 G

)3/11

. (17)

Note that µ and ε depend weakly on Ṁa. The coefficients
of proportionality in (15) and (17) also depend weakly on
the (uncertain) details of the magnetospheric geometry,
which determine the exact value of Ra.

3 Nonideal Magnetic Field Evolution

In this section, we assess critically the key assumptions
underlying the theory in Section 2, namely that magnetic
flux freezing is continuously respected as equatorward
spreading proceeds, and that the hydromagnetic config-
uration of the star evolves through a quasistatic sequence
of equilibria. Ohmic dissipation is incorporated into the
theory semiquantitatively in Section 3.1, and the existence
of Parker-type instabilities is discussed in Section 3.2.
Both effects tend to limit the effectiveness of spreading
and burial. Section 3.3 compares the approach in this paper
with previous models of field burial.

3.1 Ohmic Dissipation

The results in Section 2 are derived on the basis that the
accreted material is perfectly conducting. In reality, the
surface layers of a neutron star are resistive, due to
electron–phonon and electron–impurity scattering (e.g.
Brown & Bildsten 1998). Ohmic dissipation therefore
modifies the process of equatorward hydromagnetic
spreading.

A magnetic flux tube of characteristic dimension L′
dissipates on the Ohmic time scale τd = 4πσL′2/c2,
where σ = (Zρe2/Ampme)(1 + x2)−1/2(νph + νimp)

−1 is
the electrical conductivity, νph = (�2c/13e2kBT )−1[1 +
(5/3.5T )2]−1/2 andνimp = (3π�

3Z/8mee
4Qx)−1 are the

electron–phonon and electron–impurity collision frequen-
cies, x =pF/mec= 1.0(Z/A)1/3(ρ/106 g cm−3)1/3 is the
dimensionless Fermi momentum, and Q measures the
impurity concentration (Brown & Bildsten 1998). If τd

is greater than the flow time scale, τf = 4πR2∗ρL′/Ṁa,
then, to a good approximation, magnetic field lines are
frozen into the fluid on the length scaleL′. If τd is less than
τf , magnetic field lines diffuse through the fluid. Brown &
Bildsten (1998) compared τd and τf across a pressure scale
height h and found τd/τf ≈ Ṁa/(2 × 10−7M� yr−1). The
ratio is approximately independent of density, because
we have L′ =h∝ ρ1/3, σ ∝ ρ(xνph)

−1 ∝ ρ2/3, and hence
τd ∝ τf ∝ ρ4/3. However, it is shown in Section 2.3 that

the compressed flux layer is much thinner than the pressure
scale height, with L� 6 × 102 cm and h≈ 5 × 104 cm
for Ma � 10−5M�. Upon revising the estimate of
Brown & Bildsten (1998) to apply to the com-
pressed flux layer, we find τd = 1.4 × 1014(L/R∗)2 s
versus τf = 2.0 × 1012(L/R∗)(Ṁa/10−8M� yr−1)−1 s
for conditions at the base of the outer crust, viz.
ρ = 1 × 1011 g cm−3, T = 3 × 108 K, A= 2Z = 12, x =
37, 5= 5.6 × 108 K, νph = 3.3 × 1018 s−1, νimp = 2.1 ×
1017s−1, and σ = 9.7 × 1021 s−1.

How does Ohmic dissipation modify the process
of equatorward hydromagnetic spreading? Magnetic
field lines diffuse through the fluid over distances
less than Ld = 1.4 × 10−2(Ṁa/10−8 M� yr−1)−1R∗, the
length scale where one has τd = τf . Therefore Ld is
the minimum width of the equatorial tutu. It is attained
when Ma/M∗ ≥ 1.7 × 10−2(Ṁa/10−8 M� yr−1)1/2(B0/

1012.5 G)1/2(ψa/ψ∗)1/2 and implies a minimum magnetic
moment

µmin = 2.4 × 1027
(

Ṁa

10−8 M� yr−1

)−1

×
(

B0

1012.5 G

)
G cm3 (18)

and a maximum ellipticity

εmax = 1.3 × 10−7
(
ψa

ψ∗

)3/2

×
(

Ṁa

10−8 M� yr−1

)1/2 (
B0

1012.5 G

)3/2

(19)

from (10) and (12) respectively, independent of chemi-
cal composition to a first approximation (νph 
 νimp; cf.
Konar & Bhattacharya 1997, 1998). After accretion shuts
off, the magnetic field in the tutu and buried flux layer is
likely to diffuse poleward and resurface, with a concomi-
tant increase in µ. The time scale for poleward diffusion,
τd = 1.4 × 1014(L/R∗)2 s, lengthens progressively as dif-
fusion proceeds and the gradient scale L increases. For
τd � 107 yr, i.e. L�R∗, the pre-accretion µ is partially
restored. More work is required to determine whether µ

is fully restored in older objects.
In a recent paper, Cumming et al. (2001) improved

upon the semiquantitative estimates (18) and (19) by
constructing exact hydromagnetic equilibria illustrating
the competition between Ohmic dissipation and burial
by accretion. They found burial to be effective for
Ṁa � 2 × 10−9 M� yr−1, although the field resurfaces �
103 yr after accretion halts and may be disrupted by
buoyancy and thermomagnetic instabilities (Section 3.2).
However, these conclusions do not transfer directly to
the problem considered here, as they are derived for a
plane parallel geometry where the magnetic tension force
vanishes and one has L ∼ h.

3.2 Hydromagnetic Instabilities

The equilibria constructed in Sections 2.2 and 2.3 are
implicitly assumed to be stable for all Ma. However, in
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the late stages of accretion, when the magnetic field is
highly distorted as in Figures 1 and 2, the equilibria are
potentially unstable on the Alfvén time scale τA, break-
ing the quasistatic sequence. This is especially true when
the mass-to-flux ratio is not constrained through (5);
Mouschovias (1974) argued (by example) that an iterative
numerical scheme that solves (3) and (4) will converge to
a stable state only if supplemented by (5).

In the Type A configuration, the buoyancy of the com-
pressed magnetic flux (light fluid) along RS in Figure 1
can drive long-wavelength, slow MHD modes that over-
turn the accreted overburden (heavy fluid) on the time scale
τA. Magnetic field lines arch upward out of the surface,
forming ‘magnetic blisters’, while the accreted material
slides downward along field lines and collects in ‘magnetic
valleys’. The final state is likely to be disordered. This
process is analogous to the global Rayleigh–Taylor insta-
bility of the Galactic magnetic field discovered by Parker
(1966). However, it is difficult to be sure that the instability
proceeds, because the equilibrium state forMa � 10−5M�
has not yet been calculated rigorously. There are hints
that the configuration is poised on the edge of instability,
with the outcome depending sensitively on geometry. For
example, Parker’s (1966) instability criterion for a plane
parallel flux layer (cf. RS),

(1 + α)(α − � + 1) − α�/2 > 0, (20)

where α = B2/8πP is uniform in the equilibrium state,
borders on being satisfied (or violated) given α ∼ 1 in
the vicinity of RS. Equation (20) is a global criterion
and cannot be applied locally to RS without modifica-
tion; nevertheless, it is suggestive. In addition, the Parker
instability may be quenched prematurely, as magnetic field
lines arch upward and α decreases locally to α � 1. An
accurately calculated equilibrium state is necessary before
a definitive conclusion about stability can be reached.

Litwin et al. (2001) showed, on the basis of an MHD
energy principle, that short-wavelength ballooning modes
with line-tying boundary conditions are unstable for
α � 0.1(Ra/R∗)1/2h/R∗, i.e. for Ma � 10−12M�. They
did not address whether the nonlinear growth of the unsta-
ble modes is inhibited, e.g. by line-tying, and they analysed
an equilibrium state that exists only for small field-line
distortions (cf. Figure 1). Cumming et al. (2001) anal-
ysed a plane parallel geometry and showed that the layer
is disrupted by buoyancy and interchange instabilities for
B � 1010 G and by a diffusive, thermomagnetic instabil-
ity for B � 1011 G and Ṁa = 2×10−7 M� yr−1. They too
neglected spherical geometry and the effect of line-tying
on nonlinear growth. Instabilities of the kinds discussed
above are modified by nonideal MHD effects that operate
on time scales longer than τA, e.g. superconducting Hall
drift (Urpin & Shalybkov 1999).

We estimate µ and ε for the two extreme scenarios
where hydromagnetic instabilities do (Type B) and do not
(Type A) occur in Appendix A, deferring the more compli-
cated scenario of a partially buried, disordered magnetic
field to future work. We emphasise that the geometry

and location of the buried flux layer, and hence µ, are
equally uncertain in spherical models of burial (Romani
1990; 1993; Konar & Bhattacharya 1997), which do not
resolve the time scale τA and artificially inhibit Parker-like
instabilities by prescribing a spherical density profile and
dipolar magnetic field.

3.3 Comparison with Other Treatments
of Magnetic Burial

Most existing calculations of magnetic burial pre-
scribe a spherically symmetric density distribution ρ(r)

and a magnetic field of the quasi-dipolar form B =
curl [r−1g(r, t) sin θ eφ], where g(r, t) satisfies the induc-
tion equation (Romani 1990; 1993; Urpin & Geppert 1995;
Konar & Bhattacharya 1997, 1998)

∂g(r, t)

∂t
= v(r)

∂g(r, t)

∂r
+ c2

4πσ

[
∂2g(r, t)

∂r2
− 2g(r, t)

r2

]
,

(21)

The radial velocity profile v(r) is also prescribed: two
common choices are v(r) = 0 (Romani 1990; 1993)
and v(r)= Ṁa/4πr2ρ(r) (Konar & Bhattacharya 1997,
1998). In contrast, the theory in Section 2 allows high-
order multipoles to develop and determines both ρ(r, θ)

and ψ(r, θ) self-consistently from (3) and (4), while
assumingv(r)= 0 as in earlier work and neglecting Ohmic
dissipation. Sahrling (1998) included ∂/∂θ terms in (21),
obtaining high-order multipoles of significant amplitude,
but prescribed ρ(r). Cheng & Zhang (1998) noted that
the polar cap expands as material is added, dragging mag-
netic field lines equatorward, but ignored the back reaction
exerted by hydromagnetic stresses.

Some authors have studied the nondipolar outcome of
polar cap accretion by solving the Grad–Shafranov prob-
lem, formulated in Section 2.2, for a magnetostatic moun-
tain of accreted material confined by magnetic stresses
in the polar flux tube (Uchida & Low 1981; Hameury
et al. 1983; Brown & Bildsten 1998; Litwin et al. 2001).
None of this work incorporates the mass-to-flux constraint
(5), a weakness shared by the approximate solutions in
Appendix A. In addition, the associated numerical calcu-
lations are restricted to the regimeMa � 10−12M�, where
field-line distortion is modest and µ is reduced by a fac-
tor of order unity at most. This does not describe the late
stage of accretion, Ma � 10−2M� (see Figure 1). Ohmic
dissipation is neglected.

Uchida & Low (1981) treated the scenario where the
accreting plasma is magnetised. They found that the topol-
ogy of the buried magnetic field depends on whether
the accreting plasma is magnetised (anti)parallel to the
intrinsic magnetic moment of the star: in the paral-
lel case, the equator is an X-type neutral ring; in the
antiparallel case, the original dipole field is compressed
quasi-spherically and material drains along field lines to
form a disk in the equatorial plane. The volume of closed
field lines decreases with Ma in both cases. Solutions



Hydromagnetic Structure of a Neutron Star Accreting at Its Polar Caps 429

of the form ψ(r, θ)∝ sin2 θ are assumed, artificially
suppressing high-order multipoles.

Time-dependent, resistive-MHD simulations of quasi-
spherical, superAlfvénic accretion onto a magnetic dipole
were carried out recently by Toropin et al. (1999), to study
the global structure of the inflow. An expanding shock
wave forms near the Alfvén surface. The flow inside the
shock is subAlfvénic and collimated by the polar flux
tube, and a stagnation torus forms in the equator. Screen-
ing currents reduce µ outside the shock. The parameter
regime and boundary conditions (superconducting equa-
torial disk with a fixed ring current) do not apply directly
to an accreting neutron star, but the magnetospheric shock
and reduced µ are likely to be generic features.

Acknowledgments

This work was supported by NASA Grants NAG5–2756
and NAG5–3073, NSF Grants AST–93–15455 and AST–
95–28271, and by the Miller Institute for Basic Research
in Science through a Miller Fellowship.

A Approximate Analytic Solution of the
Grad–Shafranov Equation for
10−5M� ��� Ma ��� 10−1M�

In this appendix, we solve equations (3), (4), and (6) by
a modified version of the technique of matched asymp-
totic expansions, in the regime 10−5M� �Ma � 10−1M�
where accretion compresses the magnetic field of the star
into a thin boundary layer.

We define dimensionless variables ρ̃ = (ρ/ρ0)
1/n,

ψ̃ =ψ/ψa, r̃ = r/r0, and µ̃= cos θ , whereρ0 = 13M∗/R3∗
and r0 = 0.14R∗ are the central density and radial scale of
a spherical, � = 1.3 polytrope, and ψa is the magnetic flux
enclosed by the inner edge of the accretion disk at r =Ra

(Ghosh & Lamb 1979; Basko & Sunyaev 1976). In terms
of the new variables, with F0 = 4πGρ0r

2
0 δa, (3), (4), and

(6) take the form

∇̃2ρ̃ + ρ̃3 − δa∇̃2F̃ (ψ̃) = 0, (A1)

'̃2ψ̃ + Qaδaρ̃
3r̃2F̃ ′(ψ̃) = 0, (A2)

F̃ (ψ̃) =
{

1 − (1 − ψ̃)2 for 0 ≤ ψ̃ ≤ 1

1 for ψ̃ ≥ 1
, (A3)

with the definitions

∇̃2 = r̃−2 ∂

∂r̃

(
r̃2 ∂

∂r̃

)
+ r̃−2 ∂

∂µ̃

[
(1 − µ̃2)

∂

∂µ̃

]
, (A4)

'̃2 = (1 − µ̃2)−1 ∂2

∂r̃2
+ r̃−2 ∂2

∂µ̃2
, (A5)

Qa = (4π)2Gρ2
0r

6
0/ψ

2
a = 0.25GM2∗/ψ2

a , and δa = − 1+∫
d3x̃ ρ̃ = 0.15Ma/M∗ [using (A14)]. In the regime

10−5M� �Ma � 10−1M�, one has δa � 1 andQaδa 
 1.
In the limit Ma → 0, (A1) and (A2) describe a spherical
polytrope (∇̃2ρ̃ + ρ̃3 = 0) and force-free magnetic field
('̃2ψ̃ = 0).

The magnetic field is distorted near the stellar surface,
where one has ρ̃ � 1 (e.g. ρ̃ ≈ 0.1 beneath 10−2M� of
accreted material). It is compressed into a layer much
thinner than the accreted layer (verified a posteriori).
We therefore have ∇̃2ρ̃ 
 ρ̃ 
 ρ̃3 and can solve (A1)
approximately to obtain

ρ̃(r̃, µ̃) = f (r̃) + δaF̃ [ψ̃(r̃, µ̃)]. (A6)

The dimensionless function f (r̃) satisfies the Lane–
Emden equation (r̃2f ′)′+r̃2f 3 = 0, with boundary condi-
tions f (0)= 1 and f ′(0)= 0, and is given approximately
by f (r̃)≈ 0.29(r̃∗/r̃ − 1) for f � 1. We can add to
(A6) any harmonic function that satisfies the boundary
conditions.

A.1 Type A Equilibria

If flux freezing is respected throughout the burial pro-
cess, and if the system is stable to Parker and interchange
modes (Section 3.2), the buried flux lies along RS in
Figure 1; the leading face SV of the accreting mate-
rial spreads equatorward and ‘tramples’ magnetic field
lines underfoot. The layer is located at r̃c = r̃∗[1 − (Ma/

M∗)0.25]−1 ≈ r̃∗, implying f (r̃c)= 0.29(Ma/M∗)0.25

[1 − (Ma/M∗)0.25]−1 
 δaF̃ (ψ̃) and hence, from (A2)
and (A6),

'̃2ψ̃ + Qaδa[f (r̃c)]3r̃2
c F̃

′(ψ̃) = 0. (A7)

We solve (A7) subject to two boundary conditions:
(i) ψ̃(r̃, µ̃ �= 0)→ r̃−1(1 − µ̃2) at the inner edge of the
boundary layer, where the original dipole field is undis-
turbed (line-tying), and (ii) ψ̃(r̃∗, 0)= ψ̃∗, because mate-
rial does not accrete onto closed field lines.

In the boundary layer, we have ∂2/∂r̃2 
 ∂2/∂µ̃2

except near µ̃= 0. Upon defining a stretched radial coordi-
natex, such that r̃ = r̃c(1−ax) anda =L/Rc = (Qaδa)

−1/2

[f (r̃c)]−3/2r̃−2
c � 1, substituting into (A7), and retaining

terms of lowest order in a, we obtain ∂2ψ̃/∂x2 + (1 − µ̃2)

F̃ ′(ψ̃)= 0, which can be integrated subject to the bound-
ary conditions ∂ψ̃/∂x → 0, ψ̃ → 1 as x → ∞ (asymptotic
matching) to yield

∫ ψ̃

0
dψ̃ ′ [1 − F̃ (ψ̃ ′)]−1/2 = [2(1 − µ̃2)]1/2x. (A8)

We solve (A3) and (A8) numerically and find that the
solution is approximated to an accuracy of 20 per cent
by

ψ̃ =
{

[2(1 − µ̃2)]1/2x for 0 ≤ x ≤ [2(1 − µ̃2)]−1/2

1 for x ≥ [2(1 − µ̃2)]−1/2 ,

(A9)

ρ̃ = f (r̃) + δaF̃ (ψ̃). (A10)

The solution exhibits the following properties: ψ̃(r̃∗, 1) =
0, as required by east–west symmetry, ψ̃ is an even func-
tion of µ̃, as required by north–south symmetry, and
ψ̃ → 0 at a finite radius, r̃c.
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Near µ̃= 0, we have ∂2/∂r̃2 ∼ ∂2/∂µ̃2, as ψ̃ increases
smoothly from ψ̃ ≤ 1 to ψ̃ = ψ̃∗ 
 1, and (A9) and (A10)
are invalid. A second boundary layer is required at µ̃= 0,
of characteristic latitudinal extent 'µ̃=− a/r̃c. Its struc-
ture can be determined by solving (A7) with full Cauchy
boundary conditions. We do not attempt this here, because
a semiquantitative estimate of 'µ̃ suffices for calculating
the magnetic dipole moment of the star in Section 2.4.

A.2 Type B Equilibria

If the system is unstable to Parker or interchange modes
(Section 3.2), the magnetic field rises to the surface on the
time scale τA. If the instability evolves in a stratified man-
ner, the buried flux settles along UV in Figure 1, implying
f (r̃) � δaF̃ (ψ̃) and hence, from (A2) and (A6),

'̃2ψ̃ + Qaδ
4
a [F̃ (ψ̃)]3r̃2F̃ ′(ψ̃) = 0. (A11)

A study of the more complicated scenario of disordered
evolution (e.g. magnetic blisters) is deferred to future
work.

Upon defining a stretched radial coordinate y, such that
r̃ = r̃∗(1 − by) with b=L/R∗ = (Qaδ

4
a r̃

4∗ )−1/2, and pro-
ceeding as forTypeA, we find ∂2ψ̃/∂y2 + (1 − µ̃2)[F̃ (ψ̃)]3

F̃ ′(ψ̃)= 0, which can be integrated to yield

∫ ψ̃

0
dψ̃ ′ [1 − F̃ (ψ̃ ′)4]−1/2 = [(1 − µ̃2)/2]1/2y, (A12)

with approximate solution

ψ̃ =
{[(1 − µ̃2)/2]1/2y for 0 ≤y ≤ [(1 − µ̃2)/2]−1/2

1 for y ≥ [(1 − µ̃2)/2]−1/2
,

(A13)

ρ̃ = f (r̃) + δaF̃ (ψ̃). (A14)

Equations (A13) and (A14) reduce to (7) and (8) when
reexpressed in dimensional variables. A second boundary
layer exists at µ̃ = 0, of characteristic latitudinal extent
'µ̃ = −b/r̃∗, as for Type A equilibria.
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