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Abstract: Solar flares are thought to be caused by reconnection of magnetic fields and their associated
electric currents in the solar corona. The currents have to be there to provide available energy over and
above the current-free minimum energy state, but what generates them has been little discussed. This paper
investigates the idea that twisting motions in the turbulent convection zone below may provide a natural
source for the currents and explain some of their properties. The twists generate upward-propagating Alfvén
waves with a Poynting flux of the right order of magnitude to power a flare. Depending on the depth it takes
place, the twisting event that initiates a particular flare may occur hours, days or even months before the
flare itself.
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1 Introduction

The Sun’s magnetically dominated atmosphere is con-
stantly changing as it is subjected to a large variety of
disturbances initiated by events taking place at the photo-
sphere and deeper down. If left to itself, the coronal
magnetic field B would eventually relax to its minimum
energy state, that of a potential field with no electric cur-
rents. The associated magnetic structure is then found by
solving Laplace’s equation with an assumed distribution
of the normal component of B at the photosphere, the lat-
ter usually inferred from observations (Schmidt 1964, and
numerous later authors). Models constructed in this way
reproduce the crude features of the coronal magnetic field,
but to explain phenomena that involve energy release, such
as flares, there have to be currents that raise the energy
above its minimum level.

Observational attempts to determine the currents flow-
ing into the corona use vector magnetographs to measure
the horizontal field components Bx and By using spectral
lines formed at photospheric levels. The vertical compo-
nent of the total current inside any region can then be
inferred from Ampère’s Law, or (more dangerously, if the
data is noisy) numerical differentiation can be used to
estimate the vertical component of the curl, and hence
the current density. On this basis, it has been claimed
that active region magnetic flux concentrations sometimes
carry currents up to the order of several times 1012 A.
Furthermore, these currents are frequently ‘unbalanced’,
i.e. no corresponding return currents are observed inside
or immediately adjacent to the relevant flux concentration
(see Pevtsov, Canfield, & Metcalf 1994; Leka et al. 1996).
A recent discussion of this, with more references, is given
in Longcope et al. (1999), where an attempt is made to
identify the origin of the twists. Several possibilities are

examined, and the conclusion is that the twisting is due to
the buffeting of flux tubes by eddies in the solar convection
zone. These have helicity and so impart twist.

The existence of unreturned vertical currents is explo-
ited in a theory for solar flares put forward by Melrose
(1995, 1997). In this, the reconnection of magnetic fields
present in many other theories is accompanied by a recon-
nection of currents (see Figure 1). Before and after the
flare the same unbalanced currents emerge from or enter
the same flux concentrations, but their paths through the
corona change to connect different concentrations. A sim-
ple circuit model is used to show that the associated change
in inductive energy is easily sufficient to power the flare.
There has been criticism of this model by Parker (1996;
see also the accompanying reply by Melrose 1996). The
most important point is whether the observations indeed
pin down the absence of return currents, or whether they
are really there but are concealed by noise and lack of
resolution. This is a very important question but until it is
observationally settled theoreticians should be allowed to
keep an open mind.

This paper describes a numerical model which demon-
strates how convective twisting events located somewhere
in the convection zone can supply the corona with a
Poynting flux possessing sufficient energy to power flares.
It also goes some way to explaining how, within the
confines of the axisymmetric geometry adopted, return
currents may be expected to occur not adjacent to the flux
tube being twisted, but some distance away. Its purpose is
not to justify the Melrose model — this requires an MHD
calculation in circumstances appropriate to the corona —
but to explain how the prerequisites for the model may be
supplied by what is happening deep within the convection
zone.
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Figure 1 A schematic diagram of the Melrose (1997) model for
loop flares. On the left, (a) shows initial loops 1 and 2 (lightly
shaded) connecting footpoints 1+, 1−, and 2+, 2−, respectively,
before reconnection.After reconnection, loops 3 and 4 (shaded dark)
connect footpoints 1+, 2−, and 2+, 1−, respectively. On the right,
(b) shows how the loops reconnect when viewed from above, with
heavy solid lines denoting initial loops, heavy dashed lines denoting
final loops, and light lines indicating field/current lines in the process
of transferring from the initial to the final loops.

Details of the model are given in Section 2, which
describes a calculation where axisymmetric Boussinesq
magnetoconvection is allowed to develop an axial flux
tube which is subsequently twisted by rotating the outer
periphery. Results and their interpretation are given in
Section 3, and Section 4 concludes by discussing the impli-
cations for the Sun, the limitations and possible extensions
of the model, and the implications for the Melrose theory
of flares.

2 Description of the Computations

The equations solved are those of Boussinesq magneto-
convection: the Navier–Stokes equation with back-
reaction of the Lorentz force, the induction equation, the
equation for heat conduction in a moving medium, the
incompressibilty condition and equation of state for a
Boussinesq fluid, and the MHD approximation for the cur-
rent. The reader is referred to Jones & Galloway (1993) for
a listing of these; in a moment we will give the scaled ver-
sions used in the actual computations. In an axisymmetric
geometry, this set divides into three evolution equations
for the meridional variables and two for the twist ones.
In cylindrical polar coordinates (r, φ, z), the solenoidality
conditions for velocity u and magnetic field B allow the
definition of stream and flux functions ψ and χ such that
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(
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The curves ψ = constant and χ = constant give the
streamlines of the meridional flow and the field lines of the
poloidal magnetic field respectively. The natural variables
to use for a numerical solution are those that are con-
served under advection by the convective flow. These are
the potential vorticity �= (∇ × u)φ/r , the magnetic flux
function χ defined above, the temperature T , the specific
angular momentum h= r2ω, and the quantity b≡Bφ/r .
When the equations are scaled in units of the height of the

cylinder, the thermal diffusion time, the input mean verti-
cal magnetic field B0, and the temperature difference�T
between the top and bottom boundaries, the following set
results:
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In addition it is necessary to solve a Poisson equation
∇ · ([∇ψ]/r2)= −� in order to determine the stream
function at each timestep, and to evaluate the variable
J = −∇ · ([∇χ ]/r2) which is the φ-component of the
current divided by r . The non-dimensional numbers here
are the Rayleigh number R, proportional to the imposed
temperature gradient, the Chandrasekhar numberQ, pro-
portional to the square of the imposed mean vertical
magnetic field, and the Prandtl and Roberts numbers
σ = ν/κ and q = κ/η, which are diffusivity ratios. An
additional parameter is the ratio of cell radius to height,
which is set to unity in these computations. The notation
here is fairly standard, but see Jones & Galloway (1993)
for full definitions of all quantities.

These equations have been given at length because
they show clearly which quantities are conserved in the
absence of diffusion and back reactions of any forces on
the right hand side. Over much of the flow domain, away
from certain key locations, these RHS terms are small
and the figures in the next section can largely be under-
stood by thinking in terms of these conserved quantities,
particularly χ, h, and b.

As well as the equations, we must consider the bound-
ary conditions. These are crucial and need to be selected
very carefully to model twisting as it might happen in the
solar convection zone. The frames in the results plotted in
Figure 2 show the process we have in mind. A flux tube
extending vertically through the convection zone is sub-
jected to a twisting event by a region where there is a local
preferred sense of rotation (since in reality the convection
is turbulent, this will inevitably happen from time to time,
even disregarding the overall solar rotation). In regions
where the flow converges towards the tube axis, angular
momentum from the body of the convection cells above
and below will be swept inwards, spinning up in the pro-
cess. The resulting differential rotation will twist the tube
up, resulting in the generation of torsional Alfvén waves
which propagate upward and downward from the location
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Figure 2 Computed and derived fields for the steady state solution described in the text. The basic twisting site is in the centre
of each frame; the axis runs vertically through the centre and there are two toroidal eddies in the top and bottom halves of the cell,
shown in cross-section. These eddies converge towards the axis at the centre. The time has reached 1.02 in units of the thermal
diffusion time. Represented in the 9 frames are, scanning from top left to bottom right: the meridional stream function ψ , the
potential vorticity �, the specific angular momentum h, the azimuthal field variable b=Bφ/r , the meridional flux function χ ,
the temperature T , Bφ itself, ω itself, and the vertical component of the current jz. See text for further details.

of the twisting site. Depending on the persistence of the
anomalous rotation, this will take place either as a tran-
sient or, if the rotation continues unabated, it eventually
evolves to a steady state. In either case energy is passed
away from the twisting site as a Poynting flux, upwards at
the top boundary and downwards at the bottom.

In Figure 2, the upper and lower cells are mirror images
of one another as long as the fluid is Boussinesq, and we
actually only solve in the top one. At the latter’s lower
boundary z= 0, Bφ is changing from one sign to the other
and the rotation rate is locally a maximum, so appropri-
ate boundary conditions are that b and ∂h/∂z are zero
there. At the top boundary waves will pass out of the
domain, so it is appropriate to take ∂b/∂z and ∂h/∂z
zero there. At the outer periphery we take b= 0. By
Ampère’s Law this means there is no net vertical current
through the layer. In view of our stated aim to investigate
whether unbalanced currents are possible this might seem
perverse, but in fact any other choice predetermines the
issue, and more is learned by forcing the return currents
to be there and then observing precisely where they are
located.

An untwisted tube is first formed by allowing a non-
rotating convection cell to focus an initially uniform
vertical magnetic field into a steady concentration sur-
rounding the axis. Twisting is then initiated by rotating
the outer boundary at a uniform rate. Viscosity transfers
this rotation to the interior of the cell, where it is swept
towards the axis and spun up by the meridional circulation.

The remaining boundary conditions on the non-twist
quantities are less critical and are fully described in
Jones & Galloway (1993). The equations were solved
numerically by the finite-difference scheme described in
an appendix to that paper.

3 Results

The calculation to be described takes values R= 10 000,
Q= 5, σ = 1, q = 5, (cell radius)/height =1, and a spe-
cific angular momentum h0 = 1 imposed at the outer
periphery for t > 0.35 diffusion time units, after the
untwisted flux tube has evolved to a steady state. These
values are many orders of magnitude less extreme than
those prevailing in the solar convection zone, but should
nonetheless be representative of the physics we wish to
include (it is numerically quite impossible to compute
solutions for the true solar values).R is taken large enough
to ensure vigorous convection, and the chosen Q gives a
magnetic field weak enough to allow effective convection
but strong enough to be dynamically active when con-
centrated into a flux rope. The value taken for σ gives
a viscosity small enough to allow approximate conserva-
tion of angular momentum but large enough to transmit
the applied rotation into the body of the cell. The fluid
needs to be a good electrical conductor to form a flux tube
at all, and this is achieved by taking a high value for q. We
expect that since our subsequent results depend more on
the the effects of advection than diffusion, the same basic
phenomena will take place on the Sun. Even though the
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Figure 3 Evolution of the twist field Bφ , the angular velocity ω, and the vertical current density jz, during the transient phase.
The rotation of the outer cylinder wall is turned on at t = 0.35, and successive rows are at times 0.358, 0.368, 0.377, 0.387,
0.397, and 0.425. (By this last time the return currents at the outer periphery are established.) The time unit is again the thermal
diffusion timescale. The cells are squashed to fit on the page.

laminar diffusivities are many orders of magnitude lower
there, turbulence effectively raises them again, albeit to a
currently unquantifiable extent.

As soon as the rotation has been advected into the cen-
tral flux tube it starts to generate torsional Alfvén waves
and there is a transient phase. This takes place very quickly
because the Alfvén speed is locally high within the tube.
Thereafter, there is a gradual evolution to a steady state.
Figure 2 illustrates this eventual steady state, giving plots
of the meridional stream function ψ , the five advected
fields �,χ, T , h, and b, and the associated Bφ , rota-
tion rate ω, and vertical component of current density jz.
Figure 3 gives the time evolution of the transient, plot-
ting only the twist-associated quantitiesBφ, ω, and jz (the
evolution of the other quantities is less interesting).

To examine the propagation of twist energy into the
region above the convecting layer, it is instructive to
calculate the upward directed Poynting flux (E × B)z/µ0

per unit area at the top boundary. Using Ohm’s law for
the electric field E, this can be shown to be equal to
−(rωBφBz)/µ0. For the present calculation, we have
imposed positive rotation rate and mean magnetic field,
and this means the flux is upward ifBφ andBz have oppo-
site signs at the top. Figure 4 gives plots of these two
quantities with r , showing that apart from the initial instant
of the transient, this is indeed the case. This generation of
negative Bφ is straightforward to understand in terms of
the differential rotation that is set up. Other choices of sign
for the rotation rate and mean field give the same result
for the sense of the Poynting flux; the only crucial thing

is that the meridional convective circulation has the sense
indicated.

The plots showing the evolution of jz illustrate where
the return currents accumulate. Except right at the start of
the transient, these are found predominantly at the outer
periphery of the cell, and not surrounding the axial flux
tube. A similar result was found in Galloway & Jones
(1995) for a calculation done in a different context. The
reason for this effect can be understood by observing
that away from boundary layers the quantity b=Bφ/r
is approximately conserved. This means that as b is towed
across from the axis to the periphery just under the top
boundary, Bφ scales as r . The vertical current density jz
is proportional to (1/r)∂(rBφ)/∂r and thus scales as a
constant. This explains why the contours of jz are almost
horizontal just under the top boundary away from the flux
rope and the periphery. As r increases from zero, jz is
large and negative near the axis, then terraces for the rea-
son just described, and finally becomes large and positive
near the periphery in order to meet the condition that there
is no net total current through the layer, as required by the
Bφ = 0 outer boundary condition. The return current, here
positive, is thus generated at the outer boundary of the cell.

The version of this problem with no twists was inves-
tigated much earlier, numerically by Galloway & Moore
(1979), and analytically by Galloway, Proctor, & Weiss
(1978), and Proctor & Galloway (1979). The addition of
twists makes little difference to the structure of the merid-
ional variables. The strength of Bφ depends on the rate
at which the outer boundary is rotated. We have chosen a
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Figure 4 Evolution of the field components Br (left) and Bφ (right), plotted as a function of r across the top of the cell (going
across a whole diameter), during the transient phase and in the steady state. The rotation of the outer cylinder wall is turned on at
t = 0.35; successive rows are at times 0.358, 0.368, 0.378, 0.387, 0.397, and 1.02 (the steady state). The time unit is the thermal
diffusion timescale. The small region of negative Poynting flux surrounding the axis in the last frame is due to the existence of a
slow retrograde rotation in this region.

rate that gives Bφ of the same order as Bz in the flux tube
(cf. Figure 4), though we also did other runs where it
was an order of magnitude larger. In the fully three-
dimensional case, these would be subject to a variety of
instabilities (as, in practice, would the untwisted case).
Since twists of order one are thought to aid in stabilisation,
we have presented such a case here.

4 Discussion

The calculation in the last section achieves two important
goals. First, it demonstrates a clear mechanism whereby
turbulent convection can generate torsional Alfvén waves
which carry a significant Poynting flux away from the
twisting site. Second, it gives a reason why the corre-
sponding return currents may arise some distance away
from the outgoing currents associated with the twisting
of the flux tube itself. Reconnection of horizontal fields
at the edges of adjacent convection cells may cause the
balance of current to take place even further away in a full
non-axisymmetric convection pattern. This gives a justi-
fication for the locally unbalanced current configurations
used in the Melrose (1995, 1997) theory for solar flares.

The twisting mechanism investigated here is related to
but distinct from the ‘"-effect’ proposed by Longcope,
Fisher, & Pevtsov (1998). In that paper, convective turbu-
lence is again advanced as a likely source of the observed
twist, but the thin flux tube approximation is used, and the
effect of the convection is to cause buckling and coiling

of the tube axis. Such an effect does not appear in any
axisymmetric model, and is complementary to the work
presented here.

The actual Poynting flux involved is substantial. An
estimate based on supergranules and sunspot-type field
strengths for Br and Bφ gives a figure of the order of
107 W m−2. This is far more than is needed to heat the
solar corona (Priest 1982), though this figure is likely to
be reduced because the Poynting flux only comes through
a fraction of the top of the cell, and much of the energy pro-
duction may be in the form of transients. The question then
becomes where this energy goes, in particular whether it is
reabsorbed on its journey up through the convection zone,
or whether it enters the corona and goes right through it.

To resolve these issues requires a more detailed model
than that presented here. We have used an axisymmetric
geometry with no underlying background stratification,
without any overlying coronal model to predict the fate of
the waves once they arrive there. Some comments about
reabsorption are possible if circumstances permit a WKB
approach where the wavelength is small compared to the
scale height. Then, to lowest order, there is no reabsorp-
tion and the waves propagate out at the localAlfvén speed.
If we assume that deep down field strengths correspond
to convective equipartition (Galloway, Proctor, & Weiss
1977), this means the transit time for the waves is of the
order of the convective turnover time. This is around a day
for disturbances initiated by supergranules, and of order
a month for disturbances generated in the lower half of
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the convection zone. Thin flux tube modellers believe the
actual field strengths need to be up to 10 times higher
than this to explain flux emergence characteristics at the
photosphere (D’Silva & Choudhuri 1993; see other papers
cited in Longcope et al. 1999). In that case these times
would be up to ten times less, but they are still long — if
deep twisting events send up disturbances which trigger
solar flares, the event responsible for a particular flare may
have taken place long before. This conclusion is unlikely
to change significantly in the non-WKB case. However,
the WKB prediction regarding reabsorption is likely to
be very unreliable, particularly in view of the turbulence
present throughout the convection zone. Note that Uchida
et al. (in preparation) have performed preliminary axisym-
metric calculations in a compressible fluid to assess the
degree of reflection at a transition from high- to low-β
region. (Here the plasma β is the ratio of gas pressure to
magnetic pressure.) The wave is initially reflected but sub-
sequently modifies the boundary and finally emerges as a
nonlinear ‘bullet’.

If the waves do get through, what happens to them in the
corona? Alfvén waves are notoriously difficult to absorb
there, and the most likely outcome is that those on open
field lines propagate out into the solar wind, whilst those
on loops return to the photosphere. In the latter case, it is
not even clear how the corona can sustain anything other
than transient twists (cf. Wheatland & Melrose 1994) —
perhaps such waves are perpetually present as transients in
the corona but have a non-obvious observational signature.
Occasionally they may trigger flares by acting as ‘the straw
that breaks the camel’s back’ in pushing a coronal mag-
netic field configuration into a catastrophe where a pos-
sible equilibrium suddenly ceases to exist. The loop flare
model of Uchida & Shibata (1988) shows a numerical cal-
culation where torsional waves released simultaneously at
the loop footpoints collide at the loop apex and provoke
just such a catastrophe; see also Miyagoshi et al. (2001),
and Uchida et al. (2001).Wheatland & Uchida (1999) have
analysed statistics of transient loop brightenings versus
loop flares to show that the relative frequencies are con-
sistent with a picture where one wave on its own causes a
brightening whilst two colliding waves provoke a flare.

Concerning whether a twisting event has enough
energy to be responsible for a loop flare, there are two
cases to consider. If the magnetic configuration is pre-
stressed and the twisting event merely acts as a trigger, a
relatively small Poynting flux suffices in addition to what
was already stored in the non-potential field. However,
the twist can also have enough energy to do the job on its
own. This is what happens in the Uchida & Shibata (1988)
model. A Poynting flux of 107 W m−2 over an area with
radius 10 000 km lasting 1 h gives a total energy of order
1025 J, sufficient for even the largest flares, though these
are usually two-ribbon rather than loop flares.

A natural question is whether there is any way to
observe propagating twists in the corona. One certainly
sees visual evidence of twists in images of some features,
such as the famous ‘Grandaddy’ eruptive prominence of

1946 (see e.g. Priest & Forbes 2000, p. 4). However, the
observations are usually over too long a timescale, or are
repeated too infrequently, to be able to say much about
the detailed time dependence. Data from TRACE so far
have the highest cadence rate, and our hope is that this
paper will inspire a careful search. Higher time resolution
of variations in the horizontal components of photospheric
magnetic fields would also be worthwhile. This could per-
haps be done near the solar limb by using a magnetograph
to measure the field in the undisturbed photosphere just
outside a sunspot.Ampère’s law demands twist fields there
of several hundred gauss if there are to be unbalanced
currents of several times 1012 A coming out of the spot.
Northward and southward of the spot these would have
opposite signs, and variations on timescales of minutes
to hours would be detectable (though they might only be
present a fraction of the time).

This paper has only examined the generation of tor-
sional Alfvén waves; treating other wave modes is harder
because it requires the addition of compressibility and
non-axisymmetry. In reality all modes will be present on
the Sun, and a full calculation which establishes their
relative importance and superposes a corona into which
the various waves can propagate remains a formidable
challenge.
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