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Abstract: We present new evolutionary sequences for low and intermediate mass stars (1–6M�) for three
different metallicities, Z = 0.02, 0.008, and 0.004. We evolve the models from the pre-main sequence to
the thermally-pulsing asymptotic giant branch phase. We have two sequences of models for each mass, one
which includes mass loss and one without mass loss. Typically 20 or more pulses have been followed for
each model, allowing us to calculate the third dredge-up parameter for each case. Using the results from this
large and homogeneous set of models, we present an approximate fit for the core mass at the first thermal
pulse,M1

c , as well as for the third dredge-up efficiency parameter, λ, and the core mass at the first dredge-up
episode,Mmin

c , as a function of metallicity and total mass. We also examine the effect of a reduced envelope
mass on the value of λ.
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1 Introduction

The ascent of the asymptotic giant branch (AGB) is the
final nuclear-burning stage in the life of stars with masses
between about 1 and 8M�. The combination of exten-
sive nucleosynthesis and high mass loss makes these stars
crucial for understanding the chemical composition of
galaxies. For recent reviews see Iben Jr (1991), Frost
& Lattanzio (1995), and Busso, Gallino, & Wasserburg
(1999).

Very briefly, an AGB star is characterised by two
nuclear burning shells, one burning helium (He) above
a degenerate carbon–oxygen core, and another burning
hydrogen (H) below a deep convective envelope, as shown
in Figure 1. The He-burning shell is thermally unsta-
ble, and pulses every 104 years or so, depending on the
core mass1 and composition of the star. In each thermal
pulse (TP), the He-burning luminosity can reach up to
LHe ∼ 108L�, most of which goes into expanding the
outer layers. This strong expansion drives the H shell to
cooler, less dense regions which has the effect of extin-
guishing the H shell. The inner edge of the deep convective
envelope can then move inward (in mass) and mix to the
surface the products of internal nucleosynthesis. This mix-
ing event, which can occur periodically (after each TP), is
known as the third dredge-up (TDU) and is the mechanism
for producing (single) carbon stars. Following dredge-up,
the star contracts, re-igniting the H shell, and enters a phase
of quiescent H-burning known as the interpulse phase. The
thermally pulsing AGB (TP–AGB) is defined as the phase
after the first thermal pulse to the time when the star ejects
its envelope, terminating the AGB phase.

The efficiency of the TDU is quantified by the param-
eter λ, which is the ratio of mass dredged up by the
convective envelope, �Mdredge, to the amount by which

1Unless otherwise specified, by ‘core’ we mean the H-exhausted core.
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Figure 1 Schematic structure of an AGB star, showing the degen-
erate CO core surrounded by a He-burning shell above the core and
a H-burning shell below the deep convective envelope. The burning
shells are separated by an intershell region rich in helium (∼75%)
and carbon (∼22%) with some oxygen. Note this diagram is not
to scale. The ratio of the radial thickness of the H-exhausted core
compared to the envelope is about 1 × 10−5.

the core mass increased due to H-burning during the
preceding interpulse period, �Mc:

λ = �Mdredge

�Mc
. (1)

The value of λ depends on physical parameters such as
the core mass, metallicity (and hence opacity), as well
as the total mass of the star. Exactly how λ depends on
these quantities is still unknown. The two main reasons
for this are the difficulty in locating the inner edge of the
convective envelope during the dredge-up phase (Frost &
Lattanzio 1996; Mowlavi 1999) and the huge computer
resources required to explore an appropriate range of mass
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and composition over such a computationally demanding
evolutionary phase. Without a systematic investigation of
the dredge-up law, only certain trends have been identified
by extant models, such as the increase ofλwith decreasing
Z and increasing mass (Boothroyd & Sackmann 1988),
and the fact that below some critical envelope mass, the
dredge-up ceases altogether (Straniero et al. 1997).

The convenient fact that the stellar luminosity on the
AGB is a nearly linear function of the H-exhausted core
mass has stimulated the development of ‘synthetic’ AGB
evolution models, as a quick way of simulating stellar pop-
ulations on the AGB. The main observational constraint
which models must face is the carbon star luminosity
function (CSLF) for the Magellanic Clouds. In some syn-
thetic AGB evolution calculations, e.g. as performed by
Groenewegen & de Jong (1993) and Marigo, Bressan, &
Chiosi (1996), λ is treated as a constant free parameter,
calibrated by comparison with the CSLF.

Synthetic codes enable us to investigate a diverse
range of problems, such as binary population synthesis
(Hurley, Tout, & Pols 2002), AGB population studies
(Groenewegen & de Jong 1993), and the calculation
of stellar yields from AGB stars (Marigo 1998, 2001;
van den Hoek & Groenewegen 1997). Most parameterisa-
tions used in synthetic evolution studies are found either
empirically from observations (such as mass loss) or from
results from full stellar calculations, such as the core-
mass–interpulse–period relation. Currently there are no
parameterisations in the literature based on detailed evolu-
tionary models that describe the behaviour of λ with total
mass, metallicity, age and/or core mass, for the reasons
given above.

With current computing power the problem becomes
time consuming rather than impossible. Hence we have
embarked on just such an exploration of relevant parame-
ter space using full detailed evolutionary models. Our aim
is to determine the dependence of evolutionary behaviour
(such as the dredge-up law) on the various stellar param-
eters, and to provide these in a form suitable for use in
synthetic population studies.

This paper is organised as follows. First we discuss the
stellar evolution models and the code used to calculate
them. In the second section we discuss our method for
parameterising dredge-up and give the fitting formulae we
found from the stellar models to describe the core mass
at the first thermal pulse, M1

c , the core mass at the first
TDU episode, Mmin

c , and λ as functions of initial mass
and metallicity. We finish with a discussion.

2 Stellar Models

Evolutionary calculations were performed with the
Monash version of the Mt Stromlo Stellar Evolution Code
(Wood & Zarro 1981; Frost 1997) updated to include the
OPAL opacity tables of Iglesias & Rogers (1996). We ran
about 60 sequences of stellar models, from the zero-age
main sequence (ZAMS) to near the end of the TP–AGB for
three different compositions: Z= 0.02, 0.008, and 0.004.

For each composition we cover a range in mass between 1
and 6M�. We do not include overshooting in the convec-
tive cores of intermediate mass stars during H burning
on the main sequence, although there is observational
evidence for a small overshoot region.

2.1 Convection and Dredge-up

The amount of third dredge-up found in evolutionary cal-
culations crucially depends on the numerical treatment
of convective boundaries: many codes do not find any
dredge-up for low-mass stars without some form of over-
shoot (Herwig et al. 1997; Mowlavi 1999). Herwig (2000)
found very efficient dredge-up, with λ> 1, in a 3M�
Z = 0.02 model with diffusive convective overshoot on
all convective boundaries but no dredge-up for the same
mass without overshoot. Pols & Tout (2001) found very
efficient dredge-up, withλ ∼ 1, in a 5M�Z = 0.02 model
using a completely implicit and simultaneous solution for
stellar structure, nuclear burning, and convective mixing.
Frost & Lattanzio (1996) found the treatment of entropy
to affect the efficiency of dredge-up, and Straniero et al.
(1997) found the space and time resolution to be important.

In view of this strong dependence on numerical details,
it is important to specify carefully how we treat con-
vection. We use the standard mixing-length theory for
convective regions, with a mixing-length parameter α =
l/HP = 1.75, and determine the border by applying the
Schwarzschild criterion. Hence we do not include con-
vective overshoot, in the usual sense. We do, however,
recognise the discontinuity in the ratio r of the radiative
to adiabatic temperature gradients at the bottom edge of
the convective envelope during the dredge-up phase. We
search for a neutral border to the convective zone, in the
manner described in Frost & Lattanzio (1996). Briefly, we
extrapolate (linearly, in mass) the ratio r from the last con-
vective point to the first radiative point, and if r > 1 then
we include this point in the convective region for the next
iteration on the structure. We remind the reader that this
algorithm sometimes fails, in the sense that the convective
envelope grows deeper and then retreats, with succeeding
iterations. In such a case, we take the deepest extent as the
mixed region, even if the convective region is shallower
when the model converges.

Finally we note that, although we believe our treat-
ment of convection is reasonable, our results cannot be
regarded as the definitive solution to the difficult problem
of third dredge-up. However, the important point is that
all our models are computed using the same algorithm.
Together they constitute, for the first time, an internally
consistent set of models covering a wide range in mass
and metallicity.

2.2 Mass Loss

Mass loss is a crucial part of AGB evolution, and seriously
affects dredge-up in two ways. Firstly, for the more mas-
sive stars dredge-up can be terminated when the envelope
mass decreases below some critical value. Secondly, for
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lower masses, mass loss may terminate theAGB evolution
before the H-exhausted core reaches the minimum value
for dredge-up to occur. However, the mass-loss rate in
AGB stars is very uncertain, and for this reason we calcu-
late each stellar sequence both with and without mass loss.
By neglecting mass loss, we find the limiting behaviour
of dredge-up for each model we calculate. In Section 3,
we parameterise this dredge-up behaviour in the absence
of mass loss. When this parameterisation is used in syn-
thetic evolutionary calculations, the chosen mass-loss law
will determine if the models reach the limiting behaviour
we provide. The subsequent AGB evolution and dredge-
up will then be modified by the choice of mass-loss law.
For example, we will determine a minimum core mass for
dredge-up at a given mass and composition in the case
without mass loss, and whether the model reaches this
core mass or not will depend on the chosen mass-loss rate.
Alternatively, a particular mass-loss law may or may not
prevent a model from reaching the asymptotic value for
λ, which can only be determined from full stellar models
without the inclusion of mass loss.

We also ran one set of models with our preferred mass-
loss law. We use the Reimers (1975) formula on the red
giant branch with η= 0.4 and then the prescription of
Vassiliadis & Wood (1993, hereafter VW93) on the AGB.
VW93 parameterised the mass-loss rate as a function of
pulsation period,

log

(
dM

dt

)
= −11.4 + 0.0125P, (2)

where the mass-loss rate is in M� yr−1 and P is the
pulsation period in days, given by

logP = −2.07 + 1.94 logR − 0.9 logM, (3)

where R and M are the stellar radius and mass in
solar units. For P ≥ 500 days, the mass-loss rate given in
equation (2) is truncated at

dM

dt
= L

cvexp
, (4)

corresponding to a radiation-pressure driven wind (L is
the stellar luminosity in solar units). The wind expansion
velocity, vexp is also taken from VW93 and is given by

vexp = −13.5 + 0.056P, (5)

where vexp is in km s−1, and is limited to a maximum of
15 km s−1.

2.3 Evolutionary Sequences

The models were evolved from the main sequence, through
all intermediate stages, including the core-helium flash for
initial massM0 � 2.5M�. Most models without mass loss
were evolved until λ reached an asymptotic value. Models
with mass loss were evolved until convergence difficulties
ceased the calculation, which was very near the end of the

Table 1. Initial compositions (in mass-fractions) used for
stellar models

Z = 0.02 Z = 0.008 Z = 0.004
solar LMC SMC

X 0.6872 0.7369 0.7484
Y 0.2928 0.2551 0.2476
12C 2.9259 (−3) 9.6959 (−4) 4.8229 (−4)
14N 8.9786 (−4) 1.4240 (−4) 4.4695 (−5)
16O 8.1508 (−3) 2.6395 (−3) 1.2830 (−3)
Other Z 8.0253 (−3) 4.2484 (−3) 2.1899 (−3)

AGB phase. Typically the final envelope mass was quite
small, Menv � 0.1 for low-mass models (M0 � 2.5), and
Menv ∼ 1M� for intermediate mass stars (M0 � 3). The
remaining evolution is extremely brief, because the mass-
loss rate is so high (typically a few times 10−5M� yr−1)
at this stage.

Evolutionary sequences were calculated for stars with
masses2 1, 1.25, 1.5, 1.75, 1.9, 2, 2.1, 2.25, 2.5, 3, 3.5, 4,
5, and 6M�. The initial compositions used are shown in
Table 1 and are similar to solar, Large Magellanic Cloud
(LMC), and Small Magellanic Cloud (SMC) composition,
and were chosen to be consistent with the models of Frost
(1997).

2.4 Model Results

We found that the third dredge-up behaviour of models
that experienced the second dredge-up (SDU) (generally
masses M0 � 4 depending on Z, or core masses greater
than 0.8M�) differs qualitatively from that of lower-mass
models. To find the minimum mass for the SDU for the
three different compositions we ran a few models to the
start of the TP–AGB only. We found the SDU at M ≥
4.05M� for Z= 0.02, M ≥ 3.8M� for Z= 0.008, and
M ≥ 3.5M� for Z = 0.004.

As an example of our results for higher masses, we
show the 5M�, Z= 0.004 model with mass loss in
Figure 2. This sequence shows 74 TPs with the last cal-
culated model having Menv = 0.944 and a core mass of
Mc = 0.906. The dredge-up parameterλ is seen to increase
very quickly, reaching a value near 0.96 in only four pulses
and maintaining that value until the end of the calcula-
tion. We see that λ oscillates a little near the end, between
0.85 and 0.96; this may indicate the imprecision of the
dredge-up algorithm. We find that in all our higher-mass
models λ reached an asymptotic value of about 0.9 or
higher, regardless of composition and mass loss.

Moving to the lower mass models, we first compare
those with and without mass loss. Models with mass loss
have shallower dredge-up, sometimes none at all, com-
pared to the limiting values found with constant mass. We
note that many of the models with mass loss do not reach

2Note all masses quoted are the ZAMS initial mass, in solar units, unless
otherwise stated.
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Figure 2 Left: H-exhausted core massMc against time (years) for the 5M�, Z = 0.004 model with mass loss. This calculation
covered 74 pulses, which equated to roughly 7 × 105 individual stellar models. Right: The dredge-up parameter λ against core
mass. Dredge-up increased very quickly with pulse number, reaching 0.9 within four TPs.

Figure 3 Left:Mc against time (years) for aM0 = 1.75M�,Z = 0.02 model with mass loss. No dredge-up was found. The final
Menv for this model was 0.0087M�. Right: Mc against time (years) for a M0 = 1.75M�, Z = 0.004 model with mass loss.
This model experiences appreciable though erratic dredge-up. λ quickly reached 0.26, before being reduced back to zero, then
increased right at the end to reach 0.6. This star became a carbon star when Mc = 0.615M�, L ∼ 9700L�, and Mbol = −5.43.
The final dredge-up episode takes place with an Menv = 0.175M� after the last calculated TP. The final Menv = 0.025M�.

the minimum core mass for TDU,Mmin
c . We will therefore

parameterise Mmin
c from models without mass loss.

As with previous calculations (Boothroyd & Sackmann
1988;Vassiliadis 1992; Straniero et al. 1997) we found that
λ increases with decreasing metallicity for a given mass
(with or without mass loss) for the lower-mass models. For
example we found no dredge-up for a 1.75M�, Z = 0.02
model with mass loss, but the 1.75M�, Z = 0.004 model
with mass loss became a carbon star, with a maximum
λ ∼ 0.6, as shown in Figure 3.

One of the aims of the models with mass loss was to
examine how λ decreases with decreasing envelope mass,
Menv, and the critical envelope mass for which dredge-up
ceases. Unfortunately, the higher mass models (M � 3)
suffered convergence problems before reaching this criti-
cal envelope mass. We find no systematic decrease of λ as
the envelope mass decreases (see Figure 2). ForZ = 0.004
and Z = 0.008, the low-mass models that do experience
dredge-up have λ > 0 as long as Menv � 0.2, which is
thus our estimate of the critical envelope mass for TDU to
occur.

Table 2 presents results for the Z = 0.02 models
with (Ṁ 	= 0) and without mass loss (Ṁ = 0). The first
column shows the initial mass (M0) and the zero-age hor-
izontal branch (ZAHB) mass in parentheses for low-mass

stars. The second column gives the core mass at the first
thermal pulse, M1

c , column three gives λmax, the maxi-
mum λ for that model, column four the core mass at the
first dredge-up episode, Mmin

c , and column five the num-
ber of thermal pulses calculated. Gaps in the table reflect
models that were not calculated. Some low-mass mod-
els M ≤ 3M� (depending on Z) do not undergo enough
thermal pulses with dredge-up to obtain an asymptotic
value. In these cases we give the largest value found for λ,
denoted by ‘L’, as the value of λmax. We find no dredge-
up for the Z= 0.02 low-mass (M0 ≤ 2M�) models with
mass loss. Between 2<M0/M� < 3, we find λ to be
smaller for models with mass loss than for those with-
out. There is no appreciable difference in the values of
λmax andMmin

c for theM0 ≥ 3M� models with or without
mass loss.

Table 3 presents results for Z = 0.008. For these stars
with an LMC composition, the effect of mass loss is seen
at lower masses, with masses below 1.5M� being the most
strongly affected. By 1.9M�, mass loss has little effect on
the depth of dredge-up, where we find λmax = 0.5 for the
model with mass loss compared with λmax = 0.6 for the
model without mass loss. Note that for sequences without
mass loss we terminated the calculation once an asymp-
totic value of λ was found. Table 4 presents results for
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Table 2. M1
c , λmax, and Mmin

c for Z = 0.02

M0 M1
c λmax Mmin

c No. of TPs

Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0

1.0 (0.82) 0.542 0.0 – 11
1.25 (1.13) 0.556 0.551 0.0 0.0 – – 24 10
1.5 (1.41) 0.560 0.556 0.0486 (L) 0.0 0.658 – 24 13
1.75 (1.68) 0.561 0.559 0.223 0.0 0.634 – 28 15
1.9 (1.84) 0.557 0.0 – 18
2.0 (1.96) 0.554 0.551 0.457 (L) 0.00145 (L) 0.632 0.633 27 21
2.25 0.540 0.537 0.709 0.305 (L) 0.624 0.620 37 28
2.5 0.549 0.546 0.746 0.538 (L) 0.625 0.623 36 30
3.0 0.595 0.593 0.790 0.805 0.635 0.630 25 25
3.5 0.662 0.676 0.850 0.880 0.676 0.690 26 22
4.0 0.793 0.792 0.977 0.958 0.799 0.797 22 17
5.0 0.862 0.861 0.955 0.957 0.866 0.864 28 25
6.0 0.915 0.916 0.922 0.953 0.918 0.919 65 40

A detailed description of the table is given in the text.

Table 3. M1
c , λmax, and Mmin

c for Z = 0.008

M0 M1
c λmax Mmin

c No. of TPs

Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0

1.0 (0.85) 0.535 0.532 0.0016 (L) 0 0.657 – 22 11
1.25 (1.14) 0.540 0 – 12
1.5 (1.42) 0.550 0.545 0.306 0.0842 (L) 0.624 0.610 21 15
1.75 (1.68) 0.555 0.551 0.532 (L) 0.325 (L) 0.609 0.595 21 15
1.9 (1.85) 0.551 0.549 0.605 (L) 0.500 (L) 0.581 0.594 21 18
2.1 0.540 0.656 0.596 22
2.25 0.522 0.727 (L) 0.585 27
2.5 0.540 0.541 0.792 (L) 0.805 0.591 0.587 27 28
3.0 0.629 0.629 0.882 0.897 0.639 0.648 20 29
3.5 0.744 0.749 0.957 0.980 0.748 0.756 22 21
4.0 0.830 0.830 0.990 0.970 0.833 0.833 17 24
5.0 0.870 0.870 0.974 0.980 0.871 0.872 27 58
6.0 0.926 0.930 0.932 0.947 0.929 0.933 26 68

Table 4. M1
c , λmax, and Mmin

c for Z = 0.004

M0 M1
c λmax Mmin

c No. of TPs

Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0 Ṁ = 0 Ṁ 	= 0

1.0 (0.87) 0.541 0.533 0 0.003 (L) – 0.611 22 14
1.25 (1.16) 0.541 0.0787 (L) 0.600 14
1.5 (1.43) 0.551 0.549 0.375 (L) 0.325 (L) 0.588 0.601 15 15
1.75 (1.70) 0.558 0.553 0.611 (L) 0.593 (L) 0.589 0.592 16 18
1.9 (1.86) 0.558 0.554 0.669 0.612 (L) 0.589 0.593 18 18
2.1 0.550 0.717 (L) 0.578 16
2.25 0.537 0.538 0.770 0.767 0.577 0.577 26 26
2.5 0.578 0.577 0.783 0.832 0.607 0.603 15 28
3.0 0.699 0.694 0.963 0.952 0.706 0.702 16 26
3.5 0.804 0.806 0.982 0.998 0.808 0.809 20 23
4.0 0.842 0.842 0.990 0.975 0.845 0.845 20 30
5.0 0.889 0.888 0.970 0.960 0.891 0.890 24 74
6.0 0.962 0.959 0.933 0.940 0.963 0.961 30 95
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Z  �  0.02
Z  �  0.008
Z  �  0.004 

Z  �  0.02

Z  �  0.008

Z  �  0.004 

Z � 0.02
Z � 0.008
Z � 0.004 

Figure 4 The M1
c , Mmin

c and λmax plotted against initial mass for the Z = 0.02, Z = 0.008, and Z = 0.004 models without mass loss. In
each panel, the blue solid line refers to the Z = 0.02 models, the black dashed line to the Z = 0.008 models, and the red dash-dotted line to
the Z = 0.004 models.

Z = 0.004. For this composition mass loss only affects
models with M< 1.5M� and both the 1.5 and 1.75M�
models with mass loss became carbon stars.

Figure 4 shows the M1
c , Mmin

c , and λmax values from
Tables 2, 3, and 4 plotted against the initial mass, for
all compositions calculated without mass loss. From
Tables 2, 3, and 4 we find that M1

c and Mmin
c are largely

independent of mass loss. The behaviour ofM1
c in Figure 4

is similar for low-mass stars independent ofZ, withM1
c ∼

0.55. There is a dip in M1
c at M0 ≈ 2.25M�, correspond-

ing to the transition from degenerate to non-degenerate He
ignition, followed by an increase with increasing initial
mass. For models undergoing the SDU (M0 � 4M�) the
variation is nearly linear. The value ofMmin

c for low-mass
stars (M0 � 2.5M�) decreases somewhat with increasing
mass and decreasing Z, and then shows a similar increase
with mass as doesM1

c . ForM0 � 4M�,M1
c andMmin

c are
nearly equal, i.e. dredge-up sets in almost immediately
after the first pulse.

A comparison with current synthetic calculations is
useful. Most calculations have so far assumed a con-
stant value of Mmin

c (Groenewegen & de Jong 1993), but
Marigo (1998) attempted to improve on this. She assumed
dredge-up to occur if, following a pulse, the temperature
at the base of the convective envelope reached a specified
value T dred

b . We compared ourZ= 0.008 results forMmin
c

with Figure 3 in Marigo (1998). For M ≤ 2.5, our values
for Mmin

c agree well with her values for log T dred
b = 6.7.

Indeed, we find log T dred
b = 6.7 ± 0.2 for all our low-mass

models (M ≤ 2.5M�) but showing a slightZ dependence.
The Z = 0.02 models required slightly higher tempera-
tures than the lower-metallicity models, with log T dred

b =
6.8 ± 0.1, whilst the Z = 0.008 and Z = 0.004 mod-
els required log T dred

b = 6.6 ± 0.1 for dredge-up. We also
note that for deep dredge-up (λ � 0.5) the temperature
must be higher, log T ≈ 6.9.

3 Parameterising the Third Dredge-up

First we will describe the fit we made toM1
c and thenMmin

c
and λmax, followed by a simple prescription to model the
variation of λ with pulse number.

3.1 The Fitting Formula for M1
c

Wagenhuber & Groenewegen (1998) have provided a
fitting formula for the core mass at the first thermal
pulse, M1

c as a function of mass and metallicity (their
equation 13). We have compared their Population I fit to
our results for Z= 0.02, and find qualitative agreement
in the shape of the formula but significant quantitative
differences. The same is true for lower metallicities,
when we linearly interpolate the coefficients given in
Wagenhuber & Groenewegen (1998) for Z= 0.008 and
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Z � 0.004

Z � 0.02 Z � 0.008

Figure 5 The fit to M1
c using the Wagenhuber & Groenewegen (1998) fit with modified coefficients (solid line) plotted with model results

for the Z = 0.02, Z = 0.008, and Z = 0.004 models without mass loss.

Z= 0.004 and compare the resulting relation to our
models.

Here we provide modified coefficients for the fitting
formula given by Wagenhuber & Groenewegen (1998),
instead of providing a completely new fit to M1

c as we do
for Mmin

c and λmax. We choose to do this for two reasons.
Firstly, the shape of the function provided by Wagenhuber
& Groenewegen (1998) forM1

c (equations 13a–c) is a very
good approximation to the shape of the M1

c initial mass
relation we find from our models. Secondly, researchers
who already use the Wagenhuber & Groenewegen (1998)
M1

c fit for Population I and II stars in their synthetic evo-
lution codes can easily convert to our fit for Population
I, LMC, and SMC models. The modified coefficients to
the Wagenhuber & Groenewegen (1998) formula can be
found in the Appendix. Figure 5 shows the modified fits
to M1

c plotted against the results from the models without
mass loss. Note that the lines between 6M� and 8M� are
extrapolations from the fitting functions (valid to 6M�)
and may not reflect real model behaviour, although one
test calculation was made for M = 6.5 and Z = 0.02 and
did agree with the fit.

3.2 The Fitting Formulae for Mmin
c and λmax

We fit λmax as a function of total mass by using a rational
polynomial and Mmin

c by using a third order polynomial

at low masses. At higher masses Mmin
c simply follows

M1
c . We provide a separate fit for each composition, but

interpolation between the coefficients of the polynomials
should be possible for arbitraryZ in the range 0.02–0.004.

From Tables 2, 3, and 4 it is clear that ifM1
c > 0.7M�,

then Mmin
c has a value very close to M1

c (differing by less
than 0.005M�). Hence it is justified to take Mmin

c = M1
c

in this case. For lower masses generally Mmin
c >M1

c , and
the behaviour of Mmin

c is well approximated by a third-
order polynomial function. Figure 6 shows the fits made
to Mmin

c as a function of total mass, for the case with-
out mass loss. The reader is referred to the Appendix
for a full description of the polynomial function and the
coefficients.

The behaviour of λmax is nearly linear at low M , rising
steeply with mass untilM ∼ 3M� before turning over and
flattening out to be almost constant at high mass. This
behaviour is shown in Figure 7 for the cases without mass
loss. The fits to λmax in the figures were made with the
function

λmax = b1 + b2M0 + b3M
3
0

1 + b4M
3
0

, (6)

where b1, b2, b3, and b4 are constants given in the
Appendix. We note that as forM1

c , the lines between 6M�
and 8M� are extrapolations from the fitting functions
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Z � 0.008

Z � 0.004

Z � 0.02

Figure 6 The fit to Mmin
c (solid line) for Z = 0.02, Z = 0.008,

andZ = 0.004, plotted with results (points) from the models without
mass loss.

(valid to 6M�) and may not reflect real model behaviour,
although one test calculation was made for M = 6.5 and
Z = 0.02 and did agree with the fits presented here.

3.3 Dredge-up Parameter λ as a Function of Time

To accurately model the behaviour of the TDU we must
include the increase of λ over time. For many of the
low-mass models, λ increases slowly, only reaching λmax

after 8 or more thermal pulses. For the intermediate-mass
models,λ approachesλmax asymptotically, reaching about
0.9 λmax in 4 or more thermal pulses but it may not reach
λmax for many pulses.

Z � 0.004

Z � 0.008

Z � 0.02

Figure 7 The fit to λmax (solid line) forZ = 0.02,Z = 0.008, and
Z = 0.004, plotted with results (points) from the models without
mass loss.

To fit the behaviour of λ in the models, we propose a
simple method shown in Figure 8. When Mc ≥ Mmin

c , λ
starts increasing with pulse number, N , until λ asymptot-
ically reaches λmax for large enough N . Since our models
gave little information on the decrease ofλwith decreasing
envelope mass, we suggest λ = 0 when Menv ≤ Menv, crit,
whereMenv, crit is some critical value below which dredge-
up does not occur. Low-mass models with dredge-up
suggest that Menv, crit � 0.2.

This behaviour can be modelled with the simple
function

λ(N) = λmax

(
1 − exp−(N/Nr)

)
, (7)
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Figure 8 Left: Fit to λ from equation (7) with Nr = 4 (solid line) and Nr = 6 (dashed line) for the 5M�, Z = 0.02 sequence
without mass loss (points). We found the best fit to be Nr = 5. Right: Fit to λ from equation (7) with Nr = 2 (solid line) and
Nr = 4 (dashed line) for the 5M�, Z = 0.004 sequence without mass loss.

Table 5. Table of Nr values for Z = 0.02,
Z = 0.008, and Z = 0.004

M0 Z = 0.02 Z = 0.008 Z = 0.004

1.5 1 1 2
1.75 3 3 3
1.9 3 2 3
2.25 4 3 3
2.5 4 4 2
3 3.5 4 1
3.5 3 2 1
4 2 2 1
5 5 3 2
6 4 3 3

where N is pulse number, measured from the first pulse
where the core mass exceeds Mmin

c . Nr is a constant,
determining how fast λ reaches λmax. Due to the nature
of the exponential function given by equation (7), when
N > 8Nr, equation (7) gives a value indistinguishable
from λmax. Table 5 lists the values of Nr which give the
best fits to the models.

In finding an appropriate value of Nr for each model,
we experimented with different values for each mass. The
increase in λ observed in some models can be fitted by
a range of Nr values, especially for models that exhibit
a lot of scatter in their λ values. For example, the 5M�,
Z = 0.02 model without mass loss is one such case, where
we find the range 4 ≤ Nr ≤ 6 gives a reasonable fit
to the model as in Figure 8 (left). The depth of dredge-
up for the 5M�, Z = 0.004 model without mass loss is
plotted against two fits from equation (7) in Figure 8. We
note that while the fit withNr = 2 approximates the model
behaviour best, the fit with Nr = 4 is a good fit after 10
or more thermal pulses. We also point out that the 5M�,
Z = 0.004 model with mass loss experienced ∼80 TPs,
so the first 10 or so pulses will be less important to the
final composition of the star than the first 10 pulses of
a low-mass model that may only experience 30 or fewer
pulses in total before the termination of the AGB phase.
For low-mass models with very small values of λmax �
0.1, equation (7) did not result in a good fit regardless of

the Nr value used. We suggest setting λ = λmax when
Mc ≥ Mmin

c for these low-mass models.
From Table 5 we find a lot of variation inNr with mass.

Unfortunately, the variation is not systematic and cannot
be modelled with a simple function. As we have argued
above, the time dependence of λ for low-mass stars is
quite important as they have few TPs, whilst more mas-
sive stars have many TPs so the first pulses are not so
influential. Therefore we suggest using a constantNr value
independent of M for a given Z, consistent with the low-
mass models, e.g. Nr = 4 for Z = 0.02 and Nr = 3 for
Z = 0.008 and Z = 0.004.

4 Discussion

4.1 The Core Mass at the First Pulse

The value of the core mass at the first thermal pulse is
perhaps not crucial to synthetic models, because it is the
surface composition changes caused by dredge-up that
provide constraints on the models. Hence it is Mmin

c that
is more important. Nevertheless, comparisons with the
CSLF in the Magellanic Clouds indicate that detailed mod-
els overestimateMmin

c and it is useful to knowM1
c which is

in principle the theoretical lower limit forMmin
c . However,

M1
c may also be overestimated.
There are few parameterisations of this quantity in the

literature. Lattanzio (1989) gave a simple constant value
for low mass stars, and Renzini & Voli (1981) gave a fit for
more massive models. These were used by Groenewegen
& de Jong (1993). A more detailed fit was given by
Wagenhuber & Groenewegen (1998), which was used
by Marigo (2001). This latter fit reproduces the shape
very well. We have simply modified the coefficients as
described in Section 3.1 to provide a much better fit to the
current results.

4.2 Dredge-up: Mmin
c and λmax

Most synthetic calculations use constant Mmin
c and con-

stant λ. Groenewegen & de Jong (1993) used the constant
values given by Lattanzio (1989) for Mmin

c , and then
adjusted λ to try to fit the CSLF of the Magellanic Clouds.
They found that Mmin

c must also be decreased from the
theoretical value, and they settled on Mmin

c = 0.58 and
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λ= 0.75 to fit the observations. A similar procedure was
followed by Marigo et al. (1996) and they found Mmin

c =
0.58 and λ = 0.65. Note that Marigo (2001) now uses a
more sophisticated algorithm for determining the onset of
dredge-up, as discussed in Section 2.4.

The parameterisations we have given here should be
a significant improvement to the constant values used
for most synthetic studies. In the discussion below we
will compare our results with other detailed evolutionary
calculations.

From Figure 4 we find λmax to increase with decreas-
ing Z for a given mass, so we find low-mass models
(M0 ≤ 2M�, Z= 0.008, 0.004 with mass loss) can
became carbon stars with λmax as high as 0.6 for the
1.75M�, Z= 0.004 model. This effect is not so notice-
able for higher mass stars (M � 4M�), where dredge-up
quickly deepens with pulse number, and λmax ≈ 0.9 for
all compositions.

In comparison, Vassiliadis (1992), who used a different
version of the Mount Stromlo stellar evolution code (Wood
& Faulkner 1986, 1987) and older opacities (Huebner et al.
1977), only found dredge-up for M0 ≥ 2.5M� for LMC
abundances and for M0 ≥ 2.0M� for SMC abundances.
Clearly, the larger OPAL opacities we use (Frost 1997) and
the improved modelling of the TDU by Frost & Lattanzio
(1996) make a considerable difference.

Straniero et al. (1997), using the OPAL opacities, find
λmax ≈ 0.3 for a solar composition 1.5M� model with-
out mass loss. On the other hand, we find λmax ≈ 0.05,
substantially lower for the same mass and composition.
This is probably due to the difference in mixing-length
parameter: we used 1.75 and Straniero et al. (1997) used
the higher value of 2.2. A test calculation with a mixing-
length parameter of 2.0 yieldedλmax = 0.2.We find deeper
dredge-up than Straniero et al. (1997) for the 3M�,
Z= 0.02 model (without mass loss) with λmax ≈ 0.75
where they find λmax ≈ 0.46. These discrepancies must
also be related to the numerical differences between the
codes (Frost & Lattanzio 1996; Lugaro 2001).

We find very similar values of λ to Pols & Tout (2001)
for the 5M�, Z = 0.02 model. These authors use a fully
implicit method to solve the equations of stellar structure
and convective mixing, and they findλ to increase to ≈ 1.0
in only six TPs while our models reach λ ≈ 0.95 much
more slowly (see Figure 6).

Herwig (2000) includes diffusive convective overshoot
during all evolutionary stages and on all convective bound-
aries on two solar composition models of intermediate
mass. Without overshoot, no dredge-up is found for the
3M� model. With overshoot, efficient dredge-up is found
for both the 3 and 4M� models, where λ ∼ 1 for the 3M�
model and λ > 1 for the 4M� model, which has the effect
of decreasing the mass of the H-exhausted core over time.
Clearly, the inclusion of convective overshoot can sub-
stantially increase the amount of material dredged up from
the intershell to the surface. Langer et al. (1999), using a
hydrodynamic stellar evolution code, model the effects of
rotation on the structure and mixing of intermediate mass

stars, also find some dredge-up in a 3M� model of roughly
solar composition.

4.3 The Carbon Star Luminosity Function

The most common observation used to test the models is
the reproduction of observed CSLFs. We note that mass
loss has the largest effect on the Z= 0.02 models and we
do not find any dredge-up for M ≤ 2M�. It seems likely
that ourZ= 0.02 models with mass loss cannot reproduce
the low-mass end of the Galactic carbon star distribution
with progenitor masses in the range 1–3M� (Wallerstein
& Knapp 1998). The lowest mass solar composition model
to become a carbon star is the 3M�, Z= 0.02 model,
which has C/O ≥ 1 after 22 thermal pulses. We do note,
however, that the Galactic CSLF is very uncertain.

However, for LMC and SMC compositions, the CSLF
is very well known (see discussion in Groenewegen & de
Jong 1993). It is a long standing problem that detailed
evolutionary models fail to match the observed CSLFs in
the LMC and SMC (Iben Jr 1981). Although many of our
models with LMC and SMC compositions show enough
dredge-up to turn them into carbon stars we expect that
they will not fit the low luminosity end of the CSLF,
because we find small values of λ for M ≤ 1.5M�, less
than the value found from synthetic calculations ofλ∼ 0.5
as the required value to fit the CSLF. Also, we find larger
Mmin

c values for our LMC and SMC low-mass models
than the 0.58M� found from synthetic AGB calcula-
tions (Groenewegen & de Jong 1993; Marigo et al. 1996;
Marigo, Bressan, & Chiosi 1998).

Within the context of synthetic models one usually
modifies the dredge-up law to ensure that agreement is
reached. This usually means decreasingMmin

c and increas-
ing λ, although this has previously been done crudely by
altering constant values for all masses (possibly with a
composition dependence).3 The models presented here
show the variation with mass and composition of all
dredge-up parameters. This has not been available previ-
ously. Although modifications may be required, perhaps
caused by our neglect of overshoot (Herwig et al. 1997;
Herwig 2000) or rotation (Langer et al. 1999), we expect
the dependence on mass and composition to be retained.

5 Conclusions

We have presented extensive evolutionary calculations
covering a wide range of masses and compositions, from
the ZAMS to near the end of the AGB. Later papers
will investigate nucleosynthesis and stellar yields, but in
this paper we concerned ourselves with determining the
dredge-up law operating in the detailed models. We have
given parameterised fitting formulae suitable for synthetic
AGB calculations. As they stand, we expect that these will

3Note that Marigo (1998) adjusted her algorithm via a reduction of T dred
b

to 6.4 from the 6.7 found in detailed models.
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not fit the observed CSLFs in the LMC and SMC, a long-
standing problem. Some adjustments may be necessary,
but must be consistent with the dependence on mass and
composition as presented here. This may constrain the
adjustments and lead to a better understanding of where
the detailed models can be improved.
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Appendix

Coefficients for the Fit to M1
c : The equations used by

Wagenhuber & Groenewegen (1998) to fit M1
c are

M1
c = (−p1(M0 − p2)

2 + p3
)
f

+ (p4M0 + p5)(1 − f ), (8)

f =
(

1 + e
M0−p6
p7

)−1

. (9)

Equations (8) and (9) are almost constant for stars with
M0 ≤ 2.5M� and almost linear for stars that experience
the second dredge-up (for masses greater than about
4M�). The constant coefficients, p1 to p7, that best fit
our model results are given in Table 6.

Coefficients for the Fits to Mmin
c and λmax : Let Msdu

be the minimum mass, at a given composition, which
experiences the second dredge-up. Hence from our
models Msdu = 4M� for Z= 0.02, 3.8M� for Z= 0.008,
and 3.5M� for Z = 0.004. For masses M0 <Msdu, our
results for Mmin

c are fitted to a cubic polynomial

Mmin
c = a1 + a2M0 + a3M

2
0 + a4M

3
0 (10)

where a1, a2, a3, and a4 are constants that depend on Z
and are given in Table 7, and M0 is the initial mass of the
star (in solar units).

For cases where M0 �Msdu − 0.5M� we find that
Mmin

c > 0.70M�, and we can set Mmin
c = M1

c consistent
with our model results. Since equation (10) diverges for
large masses, in practice we recommend calculatingMmin

c

Table 6. Coefficients for equations (8) and (9): p1, p2, p3, p4,
p5, p6, and p7

Z

0.02 0.008 0.004

p1 0.038515 0.057689 0.040538
p2 1.41379 1.42199 1.54656
p3 0.555145 0.548143 0.550076
p4 0.039781 0.045534 0.054539
p5 0.675144 0.652767 0.625886
p6 3.18432 2.90693 2.78478
p7 0.368777 0.287441 0.227620

Table 7. a1, a2, a3, and a4 for equation (10)

Mmin
c Z

0.02 0.008 0.004

a1 0.732759 0.672660 0.516045
a2 −0.0202898 0.0657372 0.2411016
a3 −0.0385818 −0.1080931 −0.1938891
a4 0.0115593 0.0274832 0.0446382
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by the following procedure:

Mmin
c = max(M1

c ,min(0.7M�,Mmin
c

∗)) (11)

where Mmin
c

∗ is given by equation (10). This ensures
that always Mmin

c ≥M1
c as required, while Mmin

c =M1
c if

M1
c > 0.7M�.
We fit λmax with a rational polynomial of the type

given in equation (6). The constants, b1, b2, b3, and b4

for Z= 0.02, Z = 0.008, and Z = 0.004 are given in
Table 8. For Z = 0.02, we only fit λmax and Mmin

c down
to 1.5M� and as a consequence the fit to λmax goes nega-
tive for masses below this. ForZ = 0.008 andZ = 0.004,
we fit λmax andMmin

c down to 1M�. Therefore, if equation
(6) yields a negative value λmax should be set to zero.

It is possible to linearly interpolate between the coeffi-
cients in Z to find fits for intermediate metallicities. This

Table 8. b1, b2, b3, and b4 for equation (6) for λmax

λmax Z

0.02 0.008 0.004

b1 −1.17696 −0.609465 −0.764199
b2 0.76262 0.55430 0.70859
b3 0.026028 0.056878 0.058833
b4 0.041019 0.069227 0.075921

may not reflect real model behaviour but the functions are
well behaved. Note that interpolating between the coeffi-
cients of equation (6) in the range 0.02 < Z < 0.008 will
result in negative values of λmax between 1 ≤ M0(M�) ≤
1.5.Again we suggest settingλmax = 0 when this happens.


