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Abstract: Comet C/1850 Q1 (Bond) is one of a number of comets catalogued with parabolic orbits. Given
that there are sufficient observations, 104 in right ascension and 103 in declination, it proves possible to
calculate a better orbit. Some of the difficulties of working with 19th century observations, which show
considerable scatter, are discussed. Rectangular coordinates, both of the comet and the Sun, are interpolated
by a recursive version of Aitken’s method, rendering unnecessary the need to specify an order for the
interpolation. Comet Bond’s orbit is slightly hyperbolic.
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1 Introduction

Many comets observed during the 19th century are still
catalogued with parabolic orbits. This may be understand-
able given that, for long period comets at least, a parabola
gives an acceptable first approximation to the orbit and
is easier to calculate than an elliptic or hyperbolic orbit.
But some of these comets have good observational his-
tories, implying that we may be able to do better than a
parabolic orbit (may because one must show that, given the
errors of 19th century observations, a more refined orbit
is statistically superior to a parabolic orbit). Apparently
orbit calculators never got around to calculating a defini-
tive orbit. But why should it be of interest to improve a
parabolic orbit? What do we gain from doing so, particu-
larly if the orbit is hyperbolic or of such large eccentricity
that the comet, for all practical purposes, is gone forever?
Then, who cares? To these questions three answers may
be given. The first answer addresses craftsmanship. It is
aesthetically displeasing to leave an orbit in a sloppy state
when better can be done. The second is more practical in
this age of interest in Near Earth Objects. Suppose the orbit
turns out to be elliptical, albeit of high eccentricity? Sup-
pose the comet returns within a few score years? Suppose
that it passes close to the Earth? Suppose that the comet
may impact with the Earth? Then we would regret having
left the orbit in such a sorry state. Finally, good orbits are
necessary for statistical analyses of comet orbits, essential
for a study of the origin and evolution of comets.

Comet C/1850 Q1 (Bond) falls into this group of
comets with parabolic but we can do better orbits. The lit-
erature disclosed 104 observations in right ascension (α)
and 103 in declination (δ), implying that we can indeed
do better than a parabolic orbit. Why start with Comet
Bond rather than some other? George Bond discovered
the comet on 29 August 1850 with the 15 in refractor
of the Harvard College Observatory, the same refractor
that William Bond, George’s father, used that year to

obtain the first clear daguerreotype of the moon (previous
attempts had given blurry images). Thus, to calculate an
orbit for Comet Bond honours, in some sense, an important
milestone in astronomical history.

2 Treatment of the Observations and Ephemerides

I conducted a literature search of the journals published
in the 19th century that include comet observations and
also annual reports of some of the major observatories.
Observations of Comet Bond were found in The Astronom-
ical Journal, Monthly Notices RAS, and Astronomische
Nachrichten. Table 1 shows the observatories and the num-
ber of observations made at each. The first observation,
29 August, and the last, 13 November, were made at the
Harvard College Observatory. Figure 1 shows the obser-
vations. Observations were reduced to the common format
of Julian Day (JD), referred to Terrestrial Time (TT), right
ascension, and declination. This was necessary because
some of the observers used north polar distance instead
of δ, some expressed α in degrees, minutes, and seconds
rather than hours, minutes, and seconds, most, with the
exception of the English observers, used mean time of
place rather than Greenwich for the time of the obser-
vations, and the Dorpat observers recorded the time as
sidereal rather than mean. The observations were all made
with equatorial telescopes and filar or ring micrometers,
the comet measured with respect to a nearby reference star.
The comet’s position was sometimes published as merely
a mean or apparent place, but frequently the observer also
published the reference star and sometimes even the dif-
ference in α and in δ from the reference star,�α and�δ.
Given that modern star catalogues are more precise than
19th century catalogues, it is more accurate when a defi-
nite reference star is mentioned to recalculate its apparent
position, using the algorithm in Kaplan et al. (1989), from
a recent modern catalogue, Tycho-2 (Høg et al. 2000), and
apply �α and �δ, corrected for differential aberration,
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Table 1. Observatories and observations with sources

Observatory Obsns. Obsns. Reference1

in α in δ

Kremsmünster, Austria 10 10 AN, 1850, No. 741,
pp. 329–30

Copenhagen, Denmark 3 3 AN, 1850, No. 742,
pp. 347–48

Cambridge, England 2 2 AN, 1850, No. 739,
pp. 299–300

Durham, England 3 3 MN, 1850, Vol. 11, p. 13
Liverpool, England 2 2 AN, 1850, No. 734,

pp. 213–14
Marseilles, France 19 18 AN, 1850, No. 738,

pp. 285–86
Paris, France 8 8 AN, 1850, No. 734,

pp. 219–20
Berlin, Germany 1 1 AN, 1850, No. 740,

pp. 309–10
Bonn, Germany 3 3 AN, 1850, No. 738,

pp. 277–78
Hamburg, Germany 7 7 AN, 1850, No. 734,

pp. 211–12
AJ, 1850, Vol. 1, p. 154

Leipzig, Germany 1 1 AN, 1850, No. 738,
pp. 275–76

Markree Castle, Ireland 2 2 AN, 1850, No. 734,
pp. 13–14

Dorpat, Russia 6 6 AN, 1850, No. 735,
pp. 229–30

Geneva, Switzerland 5 5 AN, 1850, No. 734,
pp. 211–12

Cambridge, USA 18 18 AJ, 1850, Vol. 1,
pp. 141, 154

New Haven, USA 4 4 AJ, 1850, Vol. 1, p. 156
(Old) US Naval, USA 10 10 AJ, 1850, Vol. 1, p. 140

1AJ: Astronomical Journal; AN: Astronomishe Nachrichten; MN: Monthly
Notices RAS
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Figure 1 The observations.

to the new position. If �α and �δ were not given, the
differences in the positions between the older catalogue
and Tycho-2 were applied to the published positions of
the comet. Given that the stated precision of the proper

motions in the Tycho-2 catalogue is less than 0.5 mas yr−1,
even after 150 years the error in a star position should be
under 0′′.1, much better than the errors of 19th century
catalogues.

The rectangular coordinates and velocities of the comet
and the Earth were calculated by a program, used in
numerous investigations previously, that treats the solar
system as an n-body problem. The program is a 12th order
Lagrangian predictor-corrector that incorporates relativity
by a Schwarzschild harmonic metric. To obtain coordi-
nates and velocities for the Earth, the moon is carried as
a separate body. This means a small step-size, 0d .25. To
correct the comet’s orbit partial derivatives are calculated
by Moulton’s method (Herget 1968), which integrates the
partial derivatives to correct for the osculating rectan-
gular coordinates and velocities at epoch JD2397020.5
along with the coordinates and velocities. The rectan-
gular coordinates, after interpolation to the moment of
observation for the Earth and to the moment of observa-
tion antedated by the light time correction to allow for
planetary aberration, are then converted to a unit vector
that is transformed to a mean or apparent place in α
and δ by application of precession, nutation, annual aber-
ration, relativity, and so forth. Because we are dealing
with 19th century observations it is necessary to correct
for the E terms of the aberration during the calculation
of a mean place. The final step calculates an observed
minus a computed place, (O–C), in α and δ. To interpolate
coordinates and partial derivatives I developed a more flex-
ible procedure, recursive Aitken interpolation explained
in the next section, that obviates the need to specify
an order for the interpolating polynomial; one merely
specifies the desired error for the interpolated quantities.
Although there is mention of recursive interpolation in
the literature, I have yet to find a specific algorithm. The
Web site www.netlib.org, for example, a veritable treasure
trove of numerical algorithms, has nothing for recursive
interpolation.

3 Recursive Aitken Interpolation

To interpolate coordinates one is given a series of val-
ues for the arguments, x0, x1, . . . , xn, and corresponding
function values, f (x0), f (x1), . . . , f (xn). With ordinary
interpolation one then specifies the order of the polyno-
mial and the argument to be interpolated. The routine used,
whether Lagrange, Bessel, Aitken, or some other, returns
the interpolated function value and an estimate of its error.
If h is the interval of tabulation the formal error for a given
order n, En, is given by h(n+1)f (n+1)(ξ)/(n+ 1)!, where
ξ is some unknown value for x between x0 and xn. This
error represents what all polynomial interpolation meth-
ods give. If f (x) is sufficiently smooth, then its higher
derivatives do not oscillate violently and En depends on
h and n; a higher order interpolation should give smaller
error. If f (x) or its higher derivatives are not smooth,
then higher order does not imply greater precision in the
interpolation.
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Aitken’s method uses an array of coefficients Pi,j
defined as

Pi,0 = f (xi), i = 0, 1, . . . , n,

Pi,k+1=[(x − xk)Pi,k − (x − xi)Pk,k]/(xi − xk),
i = 0, 1, . . . n, k = 0, 1, . . . , i − 1, (1)

where f (xi) refers to the data points, usually equally
spaced although equal spacing is not required, and x to
the value to be interpolated. Equation (1) generates a lower
triangular array of coefficients

P0,0

P1,0 P1,1

P2,0 P2,1 P2,2
...

Pn,0 Pn,1 Pn,2 · · · Pn,n

the last coefficient of which, Pn,n, interpolates the value,
and the difference of the nth and (n−1)th interpolated val-
ues, Pn,n − Pn−1,n−1, estimates the error. To use Aitken’s
method one stipulates the order of the interpolation and
looks at the estimated error. If the latter is unacceptable,
the order is increased. This implementation of Aitken’s
method is usually referred to as iteration because, accord-
ing to equation (1), the P s are generated by iterating from
P0,0 to Pn,n.

But a glance at equation (1) shows that use of recur-
sion permits reversing the process: if the coefficients P0,0,
P1,1, . . . , Pn,n are generated recursively, one can first
specify the error desired and generate the coefficients
recursively until Pn,n − Pn−1,n−1 satisfies the criterion.
Modern languages such as Fortran 90, unlike earlier ver-
sions of Fortran, and C/C++ permit recursion. Suppose
that we wish to interpolate planetary coordinates and
velocities from an ephemeris tabulated at a one-day inter-
val. A Fortran array y(i, j), defined as a global variable
in a module ‘global’, contains the data, where i indexes
the date and j the coordinate or velocity we wish to inter-
polate. Table 2 shows possible Fortran 90 code for the
polynomials.

Table 2. Fortran 90 code for recursive Aitken interpolation

!!
!!
!! Recursive function to calculate the Aitken polynomials: k is the order
!! of the interpolation, i != k,j the coordinate or velocity to be
!! interpolated, and t the argument to interpolate
!!
!!
recursive double precision function p(i,k,j,t) result(results)
use global
implicit none
integer, intent(in)::i,k,j
double precision, intent(in)::t
double precision results
if (k.eq.0) then; results=y(i,j)
else; results=((t−x(k−1))*p(i,k−1,j,t)−(t−x(i))*p(k−1,k−1,j,t))/(x(i)−x(k−1))
end if
end function p

How do the two techniques, iteration and recursion,
compare regarding workload? From equation (1) the cal-
culation of each P involves, aside from the Pi,0 values,
only an assignment, two multiplications, one division, and
four subtractions, or seven arithmetic operations per P .
(This assumes that each arithmetic operation consumes the
same clock cycles. On machines for which multiplications
and divisions are slower than additions and subtractions,
the count per P becomes three.) From equation (1) the
iterative technique requires

n∑

i=0

i−1∑

k=0

7 = 7n(n+ 1)/2 (2)

operations to generate the lower triangular matrix of P s.
The recursive technique uses the same number of arith-
metic operations per P , but each recursive call generates
two more, plus the overhead of placing values on the stack.
Thus, the operation count becomes

7
n∑

i=1

2i = 7(2n+1 − 2). (3)

The ratio of recursion to iteration may be expressed as
f (n) = 4(2n−1)/n(n+1). For various values ofnwe find

n f (n)

8 14
10 37
12 105
14 312
16 964
18 3066
20 9986

Thus, the expense of using recursion over iteration
increases dramatically as the order increases. With the
speed of modern computers computational efficiency is
really a secondary concern unless the depth of the recur-
sion becomes excessive or the stack becomes exhausted
and aborts the program. It is, therefore, a good idea to
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specify a limit for the order of the recursive calls to handle
pathological functions that give poor results regardless of
the order used, such as functions with violently oscillat-
ing higher derivatives. Recursion’s main advantage lies in
permitting automatic control over the order of the interpo-
lation. For the interpolation of the coordinates and veloc-
ities for Comet Bond the order always started at eight, but
frequently increased to nine or sometimes ten. The user
need not concern himself with establishing an order for
the interpolation and then checking if it is adequate. In this
sense recursive interpolation becomes analogous to auto-
matic control of the interval with numerical integration of
differential equations or numerical quadrature.

4 The Observations

After the first differential corrections, corresponding to
orbits with large (O–C)s, it became evident that the
(O–C)s and post-fit residuals nevertheless still embodied
some large errors; the mean error of unit weight σ (1) from
the final solution is 5′′.16. This is higher than the 3′′.62
mean error from observations made of minor planets in
1847–1849 in a previous study of mine (Branham 1991).
A number of reasons explain this. The comparison stars
were taken from catalogues that have large errors com-
pared with modern catalogues. Lalande’s Histoire Celeste
Francoise, as updated by Baily, used byValz at Marseilles,
sometimes shows errors over 1s in α and 20′′ in δ com-
pared with Tycho-2. Fortunately, Valz also published his
observations as �α and �δ as well as apparent places
and they could thus be referred to places calculated from
Tycho-2. But this was not always possible, and one had to
take the apparent or mean place as given by the observer.
But even differential observations referred to an appar-
ent place calculated from Tycho-2 contain some large
errors because the comet itself was frequently difficult to
observe. Typical observers’ comments are: ‘comet faint’;
‘very diffused and faint nebulosity…no nucleus’; ‘weak,
round nebulosity, without noticeable nucleus or coma’.
Micrometric observations of such an object will not be
easy. Not only the comet itself presented problems, but the
observations themselves were often made at large zenith
distances (median zenith distance is 72◦). One observer
mentions specifically that the comet was measured when
very close to the horizon. (There was, however, no sig-
nificant correlation between the zenith distance and the
size of the residual: the correlation coefficient was equal
to−0.049.) There were also numerous clerical errors. One
�δ was published with the wrong sign, and at least five of
the reference stars were incorrect. This type of error could
only be found by detailed detective work. The wrong ref-
erence star, for example, could sometimes be detected by
taking an abnormally large (O–C) and seeing if there was
a relatively bright star near the published reference star
that would reduce the (O–C) to something acceptable. But
some clerical errors may nevertheless remain undetected.

But given that the data are noisy, one must consider
ways of assigning higher weight to the better observations.
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Figure 2 Distribution of weights from the biweight.

Differential observations referred to an apparent place
calculated from Tycho-2 should be better than apparent
places published by the observer. Weighting, however, is
tricky and often degenerates into an exercise into one’s
visceral feeling as to the quality of the observation. To
achieve some objectivity in such a subjective endeavour
I decided to use a weighting scheme that assumes noth-
ing as to the quality of a given type of observation, but
rather assigns weight based on the magnitude of the post-
fit residual.This type of weighting is common in iteratively
reweighted least squares (Branham 1990). I decided to use
the weighting known as ‘biweight’ because it gave good
results in a previous study of mine (Branham 1986). One
scales the post-fit residual ri by the median of the residuals
and assigns a weight wt as

wt =[1− (ri/4.685)2]2; ri ≤ 4.685
(4)

wt = 0; ri > 4.685.

Rather than start from a least squares solution, I decided
to use the robust L1 criterion (Branham 1990) for the
first approximation, calculate the residuals from this solu-
tion, compute the weights, and then calculate a least
squares solution. Because the first approximation is good,
it becomes unnecessary to iterate the solutions. Figure 2
shows the distribution of the weights. The median weight
was 0.91; 82.1% of the observations received weights
greater than 0.5, 76.8% weights between 0.7 and 1, and
67.2% weights between 0.8 and 1. Only 9.7% of the
weights were under 0.1, including 11 zero weights. The
biweight, therefore, eliminated 11 residuals, 5.3% of
the total, modest but not excessive trimming.

5 The Solution

Table 3 shows the final solution for the rectangular coor-
dinates, x0, y0, z0, and velocities, ẋ0, ẏ0, ż0, along with
their mean errors. Table 4 exhibits the covariance and
correlation matrices for the solution. The correlations are
high, but the solution itself is stable because a singular
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Table 3. Solution for rectangular coordinates and velocities

Unknown Value Mean Error

x0 0.800062585008864 0.000015116006889
y0 0.254178352285609 0.000022025333264
z0 0.202299258909604 0.000017377821954
ẋ0 −0.018968619113946 0.000001491359962
ẏ0 0.015197473728116 0.000000205744985
ż0 −0.009745969276271 0.000001242258420
σ(1) 5′′.16

Table 4. Covariance (upper triangle) and correlation (lower
triangle) matrices

0.2869 −0.4137 −0.3236 0.0280 0.0010 0.0230
−0.9896 0.6091 0.4767 −0.0404 −0.0019 −0.0339
−0.9810 0.9919 0.3792 −0.0315 −0.0017 −0.0266

0.9889 −0.9797 −0.9675 0.0028 0.0001 0.0023
0.2659 −0.3313 −0.3689 0.2172 0.0001 0.0001
0.9775 −0.9858 −0.9805 0.9686 0.3558 0.0019

Table 5. Hyperbolic orbital elements and mean errors

Unknown Value Mean Error

T0 JD2397050.32539 0d .00683
19.82539 Oct. 1850

a −923.723665704311 201.508457295895
e 1.00061230501936 0.00013373819465
q 0.565600637009132 0.016286429624161
 234◦.492067975171 0◦.005157521916
i 21◦.8798895958628 0◦.0015069065954
ω 69◦.1265933409261 0◦.1965992486476

value decomposition shows that the condition number of
the matrix of the equations of condition is 261, hardly
excessive.

Table 5 gives the orbital elements corresponding to the
rectangular coordinates of Table 3: the time of perihe-
lion passage, T0; the eccentricity, e; the semi-major axis
(negative for hyperbolic orbits), a; perihelion distance, q;
the inclination, i; the node,  ; and the argument of peri-
helion,ω.The orbit itself is hyperbolic, although the mean
error of e indicates that the possibility of a highly eccentric
ellipse cannot be excluded. The calculation of the mean
errors of the orbital elements is onerous and exhibits one
of the weaknesses of Moulton’s method, at least when
used to correct rectangular coordinates and velocities. To
calculate the orbital elements themselves from the rectan-
gular coordinates and velocities is straightforward, but the
mean errors have to be computed by use of the elements
of the covariance matrix and the partial derivatives of the
orbital elements with respect to the coordinates and veloc-
ities, ∂e/∂x0 for example; see Rice (1902) for a detailed
discussion. Because the orbital elements are related to the
coordinates and velocities in a highly transcendental man-
ner, the calculation of these partial derivatives is extremely
tedious.

Figure 3 shows the residuals from the final solution.
Although they exhibit considerable scatter — the median
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Figure 3 Residuals from the final solution.

absolute value for the residuals is 4′′.54 — they are ran-
dom. A runs test for randomness shows 106 runs out
of an expected 103.5 with a standard deviation of 7.1.
Nor does spectral analysis of the residuals reveal any
periodicities. Random, but not normal. The residuals are
slightly skewed, factor of skewness= 0.063, and platykur-
tic, kurtosis=−0.909. But given that they are random one
can consider the solution acceptable.

Is the new orbit better than the parabolic orbit initially
used? The answer is a definite yes. The ratio of the sum
of the squares of the pre-fit (O–C)s between the initial
orbit and the final orbit, before treating the observations
in any way such as eliminating outliers, is 382. By any
statistical test one cares to use this represents significant
improvement.

6 Conclusions

One hundred and four observations inα and 103 in δ, made
between 29 August and 13 November 1850, are used to
calculate an orbit for Comet C/1850 Q1 (Bond). The orbit
is slightly hyperbolic.
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