
CSIRO PUBLISHING

Publications of the Astronomical Society of Australia, 2003, 20, 300–313 www.publish.csiro.au/journals/pasa

A Distributed Data Implementation of the Perspective Shear-Warp
Volume Rendering Algorithm for Visualisation of Large

Astronomical Cubes

Brett Beeson1, David G. Barnes2 and Paul D. Bourke1

1 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218,
Hawthorn, Australia, 3122

2 School of Physics, The University of Melbourne, Parkville, Australia, 3010
barnesd@unimelb.edu.au

Received 2003 May 23, accepted 2003 August 21

Abstract: We describe the first distributed data implementation of the perspective shear-warp volume
rendering algorithm and explore its applications to large astronomical data cubes and simulation realisations.
Our system distributes sub-volumes of 3-dimensional images to leaf nodes of a Beowulf-class cluster,
where the rendering takes place. Junction nodes composite the sub-volume renderings together and pass
the combined images upwards for further compositing or display. We demonstrate that our system out-
performs other software solutions and can render a ‘worst-case’ 512× 512× 512 data volume in less than
four seconds using 16 rendering and 15 compositing nodes. Our system also performs very well compared
with much more expensive hardware systems. With appropriate commodity hardware, such as Swinburne’s
Virtual Reality Theatre or a 3Dlabs Wildcat graphics card, stereoscopic display is possible.

Keywords: methods: data analysis — techniques: image processing — surveys

1 Introduction

Astronomers, by virtue of the software provided to them
for display and analysis, are ordinarily restricted to dis-
playing two dimensional slices of data extracted parallel
to one of the fundamental axes of their dataset. Some
advanced applications exist, such as the kpvslice appli-
cation in the Karma suite of visualisation tools (Gooch
1995), which provides the facility to display non-axial
(and indeed non-planar) slices through volumetric data.
Similar tasks are available in some radio astronomy reduc-
tion packages (e.g. velplot in Miriad). However, the
dominant representations of volumetric data adopted for
analysis or publication are two-dimensional axial slices
(often with information along the non-displayed axes
collapsed by some statistical operation — a moment map)
and one-dimensional profiles such as spectra.

Volume rendering (hereafter VR; Drebin, Carpenter, &
Hanrahan 1988) is an advanced technique for visualis-
ing volumetric datasets, wherein rays are cast through the
data volume to generate a projected view. VR is useful
for data with poorly defined surfaces such as astronomi-
cal data because in general it shows integrated properties
of the data and enables arbitrary projections of the data
into the displayed image plane. In many cases, such non-
axial projections can enable the detection of new structure
and relationships in complex multi-dimensional datasets,
which are otherwise not visible in axial slices, or are con-
cealed or washed out by statistical moment operations.
For example, VR has been shown to be exceptionally use-
ful for inspecting interferometric radio telescope images,
especially as a tool to disentangle the complicated gas
kinematics in disturbed galactic disks (Oosterloo 1995).

Furthermore, interactive rendering in which the volume
can be manipulated (e.g. rotated, translated or magnified in
the viewing space) in near real-time, or where the transfer
function controlling the mapping of data values to colours
or opacities can be modified, can provide a substantially
improved perception of structure in even quite noisy data.

Modern imaging systems, such as radio telescopes, can
produce images having upwards of 100 million voxels. For
smaller images, e.g. a single HIPASS cube (Barnes et al.
2001) covering ∼50 square degrees and having dimen-
sions 170× 160× 1024 voxels, a VR application such as
Karma’s xray is satisfactory when running on a work-
station with a few hundred megabytes (MB) of memory.
A present-day CPU can render of order 8 million voxels
(Mvox) per second, so one can expect, and indeed achieve,
frame rates of about 0.3 frames per second (fps) using xray
to render a 28 Mvox HIPASS cube. However, for many
other cases, VR lies squarely in the domain of high perfor-
mance computing (HPC). For example, the entire HIPASS
dataset computed as a single data cube in the Zenithal
Equal Area projection (ZEA; Calabretta & Greisen 2002)
will comprise some 6× 109 voxels!To volume render such
an image requires of order six gigabytes (GB) of memory
(using only 8 bits per voxel). Even if such a machine were
available, each frame would take at least 10 minutes to
compute.

Direct images are not the only candidates for VR. Sur-
vey projects, for example the Sloan Digital Sky Survey
(SDSS; York et al. 2000, Stoughton et al. 2002), now rou-
tinely collect tens of parameters for hundreds of millions
of objects. For such databases, traditional visualisations
such as two-dimensional scatter plots can and should be

© Astronomical Society of Australia 2003 10.1071/AS03039 1323-3580/03/03300



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 301

augmented with more sophisticated visualisation-aided
data mining techniques. Plotting ∼109 individual points
in a three-dimensional phase space and then projecting
to a particular point of view is a formidable task for
single modern CPU, even one assisted with a geometry
and transform hardware. If, instead, the data points are
first gridded into a coarse volumetric dataset, having, for
example, 256 cells on each of three axes, the resultant
data cube is of modest enough size for a VR algorithm to
be applied and the data manipulated in real time. Some
systems, especially those associated with virtual observa-
tory endeavours, are pursuing this approach. For example,
the datoz2k database system (Ortiz 2003) has a facility
to generate simple VR visualisations of gridded catalogue
data and present them to the user in a web browser.

VR is computationally expensive because the genera-
tion of a single projected view requires the consideration
of all voxels in the data source; the display of two-
dimensional slices generally involves less than one percent
of the voxel data. Fast and cheap hardware solutions do
exist in the form of mass-market computer graphics cards.
Their texture memory can be filled with slices extracted
from the dataset, and then the geometry, transform and
blending features of the card can be used to compos-
ite these textures into a projected view of the volume.
However, this approach is severely limited by the mem-
ory available on present-day graphics cards (typically
≤128 MB), and an inflexible (hardware-coded) blending
function.

Software algorithms, on the other hand, are free to
use main memory (typically ≥ 1 GB) and can give more
extensive coverage of the domain of blending functions.
Several algorithms have been developed for fast VR and
we have chosen the fast and efficient shear-warp (S-W)
factorisation. A few parallel implementations of the S-W
factorisation already exist (e.g. VolPack [Lacroute &
Levoy 1994]; the National Center for Atmospheric
Research’s volsh; Virvo [Schulze & Lang 2002]), but
none distribute the data — all nodes ‘know’ all of the
data. In practice this limits these systems to rendering data
volumes which, in their entirety, fit in a single node’s mem-
ory space. As typical datasets from astronomical surveys
now exceed 1 GB and are growing faster than the memory
of commodity workstations, we explore the first imple-
mentation of the S-W algorithm for distributed data. By
developing a VR application which runs on the nodes of
a Beowulf-type cluster (Sterling et al. 1995), we benefit
in two distinct ways, namely:

1. more processing resources are brought to bear on the
problem, thereby improving minimum rendering time,
and

2. more memory resources are made available, thereby
enabling larger datasets to be rendered.

We have based our work on the Virvo code1, described
in Schulze & Lang (2002) and generously provided to us

1http://www.hlrs.de/organization/vis/people/schulze/virvo/

by Juergen Schulze. From Virvo we use the rendering
core to compute volume renderings of subsets of the data,
modified by us to support the associative operator neces-
sary for distributed data rendering. The remainder of the
system — support for FITS-format data, the data division
strategy and implementation, the correct compositing of
individually rendered images, the design and implemen-
tation of the parallel, multiple-node distributed rendering
tree, the selection and use of suitable compression tech-
niques at different points in the system, and the front-end
control and display software — is entirely new work.

We commence this paper with a brief review of vol-
ume rendering in Section 2. We describe the extension to
distributed data rendering in Section 3, including some
remarks on data division and optimisation strategies. In
Section 4 we describe the essential features of the user
interface to the software we have developed. We char-
acterise its performance and scalability in Section 5 and
finally we provide some sample applications in Section 6.

2 Volume Rendering

There are two distinct operations fundamental to VR
which we now describe. First, a VR operator is required
which, given a set of voxels ordered back to front, will
produce an integrated quantity representative of that set of
voxels. Secondly, an efficient method of calculating lines
of sight through the data volume, and therefore providing
sets of voxels ordered back to front, is required.

2.1 The Volume Rendering and Compositing Operator

A volume is rendered by mapping each scalar voxel
to a colour and opacity (see below) and accumulating
integrated colour and opacity values along multiple con-
ceptual viewing rays through the volume. To enable dis-
tributed data VR, we need to ensure that sub-volumes of
the data may be volume rendered independently and then
composited together to produce the same result as if the
entire volume had been rendered at once. We consider
rendering to be the operation of producing a single out-
put image from multiple input voxels and compositing
to the be operation of producing a single output image
from multiple input images. The same operator is used for
both and must be associative. Note that not all voxel or
pixel compositing operators are associative, for example
the commonly used blending function of OpenGL2 is not.
In a now classic paper, Porter & Duff (1984) present a
number of operators suitable for compositing separately
rendered images and derive the over operator, so named
for the placement of a rendered foreground image over
a rendered background image. We have chosen to use the
over operator as it is associative and suitable for use in both
VR and compositing. We now briefly review this operator
and direct the reader to Blinn (1994) for further details.

We define opacity (α) in the interval [0, 1] with α= 0
and α= 1 representing completely transparent and com-
pletely opaque voxels, respectively. Consider first the

2http://www.opengl.org/



302 B. Beeson et al.

Figure 1 The shear-warp for parallel (left) and perspective (right) projections. Figure credit: P. Lacroute.

operation of combining a foreground pixel (F , a vector
of red, green and blue colour components) with opacity
αF , with a background pixel (B). The output pixel (O) is
simply

O = αFF + (1− αF )B, (1)

evaluated independently for the three colour components.
Equation 1, the painter’s equation, is not associative. This
is easily seen as there is no reference to the opacity of the
background pixel.

We want a VR and compositing operator, ‘&’, such
that for background, middle-distance (M) and foreground
voxels,

(B&M)&F = B&(M&F) (2)

To find the operator &, we set an intermediate image, I, to
be the composition of the middle-distance and foreground
voxels, i.e.

I =M&F, (3)

substitute in the painter’s equation (it must still hold in
the case of a completely opaque background voxel), and
evaluate I. We find that:

αI = (1− αF ) αM + αF (4)

Ĩ = (1− αF )M̃+ F̃, (5)

where the tilde above the voxels implies pre-multiplication
by the opacity: X̃ ≡ αXX . Equations 4 and 5 define
the over operator which we adopt for VR and composit-
ing. Note that for αM= 1, these equations reduce to the
painter’s equation. While the over operator is associative,
it is not commutative, so we must preserve the ordering of
voxels during VR and compositing.

2.2 The Shear-Warp and Perspective Shear-Warp
Techniques

There are two distinct approaches to applying a VR
operator to a volume of data:

1. A pixel-order renderer (also referred to as a ray-
caster) loops over all of the pixels in the projected
output image. For each pixel, a list of contributing
voxels is compiled and sorted according to distance
from the image plane and then the VR operator is
applied working from the back to the front of the list.
Pixel-order rendering is suitable for associative but
non-commutativeVR operators and is eminently suited
to parallelisation by scan-line subdivision.

2. A voxel-order renderer (also referred to as a splat-
ter) loops through the data volume and projects each
voxel onto the image plane. It lends itself well to com-
mutative operators, such as max (maximum value),
sum (summed value) and so on, but in general will
be an extremely inefficient procedure for any non-
commutative VR operator (for example, an opacity-
dependent operator).

For a parallelised, distributed data renderer, we note
that pixel-order rendering is not suitable because it would
require all nodes of the rendering cluster to have access to
all of the data. Somewhat paradoxically, voxel-order ren-
dering is also not satisfactory, since it does not efficiently
support non-commutative (i.e. ordered) operators which
we have already established are required for piecewise
rendering and compositing of a large data volume! Fortu-
nately, an elegant and efficient technique (to some extent a
halfway point between pixel- and voxel-order rendering)
exists: the shear-warp factorisation.

The S-W factorisation was first applied to volume ren-
dering by Lacroute & Levoy (1994). This algorithm shears
the volume space and warps the image space, so that view-
ing rays are parallel to a fundamental axis of the data
volume (see Figure 1, left). In the transformed space,
voxels and pixels align, and a VR system can traverse
the volume and the image in order. Furthermore, the tra-
jectories of individual viewing rays no longer need to
be calculated, saving many costly transcendental calcu-
lations. The S-W is easily extended to provide perspective
by including a distance-dependent scaling in the transform
(see Figure 1, right).

3 Distributed Data Volume Rendering

Our distributed data volume renderer is constructed using
the S-W algorithm (with or without perspective) and the
over operator:

1. The data volume is divided into two or more sub-
volumes, each a three-dimensional array of voxels.

2. The S-W algorithm is used to render (with the over
operator) each sub-volume independently with the
same camera and projected onto the same image plane.

3. The over operator is then used again, this time to com-
posite the rendered images, proceeding from back to
front according to the position of the sub-volumes in
the original volume.



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 303

head compositor

compositors

renderers

Figure 2 Example rendering tree with branching factor b= 2 and
number of levels n= 3.

The associativity of the over operator, its use for both ren-
dering and compositing, and the correct sorting of the
rendered images prior to compositing, ensure that the final
composited image is identical to the output of a single-pass
renderer.

3.1 The Rendering Tree

We use a rendering tree with a configurable branching
factor b, similar to the scheme used in VFleet3, except
that VFleet is a parallel renderer requiring all render-
ing nodes to have access to all of the data. The rendering
tree contains compositors (branch nodes) and renderers
(leaf nodes). For an n-level tree, there are bn−1 render-
ers and 1+ b+ b2+ · · · + bn−2 compositors. A simple
example rendering tree with b= 2 and n= 3 is shown in
Figure 2. The connections between nodes represent socket
connections.

The parameters of the rendering tree can be tuned to
suit various configurations of processor speed, physical
network topology and network bandwidth availability. For
slow processors connected by a fast network, a low branch-
ing factor shares the compositing amongst many nodes,
the extreme case being a binary tree with only one more
renderer than compositors. Conversely, a tree of fast pro-
cessors connected by a slower network will benefit from a
higher branching factor which places more load on fewer
compositors, the extreme case here being a single com-
positor with b renderers. For a shared memory machine,
where inter-node bandwidth can exceed 1 GB with sub-µs
latency, the best rendering tree will be likely to be
one which utilises all available processors. We discuss
performance further in Section 5.

3http://www.psc.edu/Packages/VFleet_Home/

3.2 Data Division

The rendering tree structure largely determines how the
volume data should be divided amongst the rendering
nodes. We adopt an iterative division scheme which works
in the following way. The head compositor node (the top
of the tree in Figure 2), divides the entire data volume into
b pieces which it passes to its b children. If the children
are themselves compositors, then they further divide their
own sub-volumes along the longest axis into b pieces for
their b children. Note that the head compositor can, but
need not necessarily, send ‘physical’ arrays of data to the
children. The data volume can be subdivided in advance if
the rendering tree structure is known and each sub-volume
stored on network disk accessible to the rendering nodes,
or even disk local to each node for even faster start-up. The
division scheme produces convex, adjacent sub-volumes,
thereby ensuring correct ordering is possible and yielding
a balanced rendering tree. This strategy could be modified
for use on a cluster with ‘fast’ and ‘slow’ nodes, but care
would need to be taken to ensure that a unique back-to-
front order remains. Note that the volume division must
ensure sufficient information is available to each node to
correctly reproduce edge values. To this end, we divide
volumes as depicted in Figure 3, such that sub-volumes
are always the same size and share at least one plane of
voxels.

3.3 Compositing

With the rendering tree installed and configured, VR can
proceed. The requested viewing angle and image plane
are parametrised and passed all the way down the ren-
dering tree to the renderers. They apply an appropriate
shear to their (sub-volume of) data, possibly applying a
perspective scaling, use the over operator to generate a
projected, volume rendered image and then warp this into
the required image plane. The rendered images are then
sent progressively up the tree where compositors use the
same over operator to combine the b images of adjacent
sub-volumes rendered (or composited) by their children,
using ordering information from their positions. The head
compositor node produces the final rendered image.

3.4 Optimisations

3.4.1 Dynamic Range Compression

On 32-bit architectures, a single floating point value
occupies 4 bytes. This provides a huge dynamic range
(typically of order 1038) which is rarely, if ever, required.
This is especially true in the context of visualisation,
where on a 24-bit display there are (nominally) 16 M
colours available4, of which, under the very best condi-
tions, the human eye can distinguish perhaps up to 1 M
(Halsey & Chapanis 1951). To save a factor of four in
memory requirements (and a similar factor in the num-
ber of processor cycles needed to shear data planes), it

4However, many fewer than 16 M colours are produced in practice by
computer display systems as they fail to produce fully saturated colours,
and ambient light can substantially reduce contrast.



304 B. Beeson et al.

Figure 3 Volume division: dividing along an even-length axis (left) and an odd-length axis (right). The
circles represent individual samples (i.e. voxels) in the data volume, which extends into the page.

These
viewing
angles prefer
data stored in rows

These viewing angles
prefer data stored in
columns

Figure 4 The effect of viewing angle on the preferred data storage scheme, illustrated for an axial slice
through a volume.

is straightforward to reduce the dynamic range to 65536
or even 256 by mapping the input floating point data to
16-bit or 8-bit integer values. Provided a careful choice
of mapping is made, this measure will only infrequently
compromise the output of VR.

3.4.2 Shear-Warp Projections

The efficiency of the S-W algorithm is mostly due to the
traversal of the volume data in order. This depends on
the volume data being stored such that the data for each
sheared plane is stored in a single block of physical mem-
ory. For a three-dimensional volume of data, there are three
orthogonal sets of planes which might be sheared, defined
as the planes perpendicular to the first axis, the second and
the third. In the non-perspective S-W, every viewing angle
can be identified with one of these sets which is optimal
for efficient rendering. Figure 4 should help clarify this:
for viewing angles from the bottom (or top) of the figure,

the S-W algorithm can be applied more efficiently with the
data stored in rows, while for viewing angles from the right
(or left) of the figure, the data is best stored in columns.
This voxel set selection as described has the basic function
of keeping the shear ‘rate’ to less than one pixel per plane
(at 45 degrees it is equal to one pixel per plane). In terms
of efficiency this reduces memory requirements during
the shear and reduces the total extent of the sheared axis
(thereby reducing the intermediate rendered image size).
Further, it also improves the correctness of the rendering
by selecting against lines-of-sight which go through more
than two pixels per sheared plane.

Most implementations of the S-W algorithm store the
volume in one order and re-order the data when the
viewing angle demands a new storage order. As real-
time re-ordering is not feasible for sub-volumes larger
than a few Mvox, our implementation stores the three
alternately-ordered copies of the sub-volume data on each



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 305

rendering node. While this triples memory requirements,
it can substantially improve the interactive response of the
system during rapid changes to the viewing angle5.

3.4.3 Window-Encoding Images

Images are sent from renderers to compositors and from
compositors to compositors, quickly consuming network
bandwidth. To improve transfer speed, each image can be
window-encoded before it is sent upwards to a compositor.
This involves computing the bounding box of non-blank
pixels and only sending this sub-image. We do this by pro-
jecting each corner of the volume into the image plane.
Very often the sub-volume rendered by a renderer or com-
posited by a compositor will only project to a small part of
the final image, so substantial savings can be made using
window-encoding.

3.4.4 Minimal Compositing

The brute force method of compositing is expensive since
every pixel in the b input images must be considered.
Performance can (obviously) be improved considerably
by only compositing the non-blank image sections. This
is accomplished by using the window-encoding informa-
tion already computed for the network transfer of images
and choosing not to decode the full-size images. In this
way the rendering tree composites only sub-images of
sub-volumes.

4 Display and Control

4.1 The User Interface

Volume rendering is often used to explore data — the
user will modify the transfer function and move the view-
point in order to identify and visualise different features
of the data. A user interface is required, which we have
chosen to de-couple from the rendering tree for the very
important reason that the user may not be in the same
physical location as the cluster that is available to render
their data (see Figure 5). Additionally, the user’s work-
station may well be slow compared to available cluster
nodes, and so computation on the workstation is kept to the
minimum necessary to display the rendered image and to
control rendering parameters such as the transfer function
and viewing angle. We also note that separating function
and interface allows future interfaces to re-use existing
functional codes.

As the network connection between the user’s work-
station and the VR cluster may be slow compared to the
cluster interconnect, it is prudent to run-length encode
the image produced by the head compositor before it is
sent to the user interface for display. Run-length encoding
(RLE) entails replacing runs of repeated data values with
the data value (or values) and a repeat count. For exam-
ple, the sequence kavababababyt might be replaced by
kavab+3yt. Since a final rendered image might have large

5For cases where memory resources are precious, this optimisation could
in principle be switched off.

head compositor

compositors

(remote) workstation

Figure 5 The top of a rendering tree running under the control
of a (possibly remote) workstation. Typically the cluster nodes will
interconnect via a fast, low-latency network, while the workstation
will communicate (only) with the head compositor via standard
ethernet. The workstation may be a different architecture to the
cluster nodes, which themselves may be a heterogeneous collection.

but irregular patches of black (due to pixels whose lines-
of-sight do not penetrate any of the data volume), RLE
offers a good compromise between compression speed
and compressed image size (i.e. network transfer time).
The only other network traffic sent between the interface
and the rendering tree is limited to a small set of instruc-
tions issued in response to user activity, such as load data
and rotate.

The rendered image is displayed in the main window
of the interface, which is written in Tcl script using the
Tk widgets. Tcl and Tk were chosen for their availabil-
ity on a wide range of systems (such as Unix, Microsoft
Windows, Mac OS X) and also for the ability to use Tcl
scripting to produce movies following calculated ‘flight
paths’, or sequences of volume renderings of one dataset
after another. Tcl is actually quite fast for an interpreted
language and our choice of Tcl does not impact at all on
rendering frame rates.

In the interface, the user can drag the mouse to rotate the
volume, or rather, to move the camera around the volume.
This system of direct volume movement is far more intu-
itive than setting camera angles manually as is required in
Karma’s xray, but calls for frame rates of a few frames per
second to be usable. Our distributed system can meet this
requirement for relatively large volumes (see Section 5).
Our combined system of distributed data VR and the Tcl
user interface is christened dvr, standing for ‘distributed
volume renderer’.



306 B. Beeson et al.

Figure 6 Example rendering of a synthetic dataset (left), and the transfer function used (right), showing the combination of a ramp and blank.
The thick blue line indicates the combined effect, with the blank taking precedence over the ramp.

4.2 Perspective and Stereo Rendering

The camera control in the user interface allows the user
to switch on perspective rendering. Perspective is gen-
erally not necessary for middle and distance views, but
becomes essential for nearby views and views from within
the volume itself. The perspective shear-warp projec-
tion (see Figure 1) could more accurately be called the
scaled shear-warp projection, as the only substantial dif-
ference from the parallel shear-warp projection is in the
application of a distance-dependent scale factor during
the shear. In practice, the scaled shear-warp is slower
than the parallel shear-warp because of the additional
resampling of the volume data. However, the scaling
operation produces an intermediate image, whose reso-
lution can be chosen to provide an accurate rendering,
or a faster, coarser rendering. Consequently, when a per-
spective render is selected, our system allows the image
quality to be reduced while the volume or camera is in
motion to provide higher frame rates. When the user stops
manipulating the volume, a higher fidelity image can be
rendered.

With appropriate hardware dvr can produce and display
stereoscopic volume renderings. We use a non-symmetric
camera frustum for off-axis stereoscopic rendering, which
produces coincident projection planes for both eyes6. The
two views are rendered independently by dvr, one after
the other, and the user interface combines the images for
display, either on a 120 Hz frame-sequential stereo sys-
tem with active LCD shutter glasses or a dual display
passive stereo system viewed with Polaroid glasses. We
note that perspective rendering is essential for meaningful
stereoscopic display.

4.3 The Transfer Function

The most important tool provided to the user is the transfer
function editor, which controls the mapping from scalar
voxel values (S) to colour (F , a vector of red, green and

6An introduction to the subtleties of stereographics can be found at
http://astronomy.swin.edu.au/∼pbourke/stereographics/stereorender/

blue colour components) and opacity (αF ):

S(x, y, z)→ {F(x, y, z), αF (x, y, z)} (6)

Our implementation of a transfer function editor, as shown
in Figure 6 with a sample rendering, is now described.
Certainly many other schemes are imaginable and could
be implemented to replace the existing one. The X-axis
of the transfer function graph extends over the the scalar
data domain, which for 8-bit data is [0, 255]. A histogram
of the voxel values can be displayed in the background
of the transfer function graph to assist with interpretation
and construction of the function.

To control opacity, or the ‘see-throughness’of the data,
the user is able to select and place various alpha pins in the
top panel of the transfer function editor. In this area, theY-
axis represents opacity in the range [0, 1]. The alpha pins
include: straight lines (‘ramps’) whose slope and position
can be controlled; trapezoidal functions (‘hats’) whose
height, width and edge slope can be controlled and whose
special cases include the tophat and triangle functions;
and blanks whose width and position can be controlled.
Where multiple pins are used and overlap, the maximum
opacity is adopted, except that blanks, which make voxels
totally transparent, have precedence over all other pins.
In Figure 6, the effective opacity function as a result of
combining a ramp and blank is marked in blue.

The coloured bar along the X-axis shows the map-
ping S(x, y, z) → F(x, y, z), which is modified using
colour pins, shown as vertical dashed lines. Each colour
pin defines a colour using red, green and blue values
in the range [0, 255] and colours are linearly interpo-
lated between the pins. The colour pins can be moved,
effectively compressing or extending the gradient between
adjacent pins. Colour pins can also be added or removed
and several popular colourmaps are provided with pre-
configured pin colours and positions. A particularly effec-
tive way to use the colour and alpha pins is to provide
strong colour gradients and moderate opacity over the
‘interesting’ (signal) part of the voxel value domain, with
gradual gradients and low or zero opacities over the
remainder of the domain (typically the noise).



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 307

Figure 7 Example rendering of a synthetic dataset (left) and the transfer function (right) which in this case is a simple trapezoid function.
The thick blue line indicates the nett opacity transfer function.

In Figures 6 and 7, we show the effect of two different
transfer functions on a synthetic dataset. The data volume
is a rectangular prism, with scalar value zero at its centre,
increasing linearly with radius to 255 at the centre of the
faces perpendicular to its longest axis. The transfer func-
tion of Figure 6 comprises a ramp which sets scalar values
of zero to be completely opaque, scalar values of 255 to be
completely transparent and intermediate scalar values to
be partially transparent. In addition, a blank is used which
overrides the ramp and renders scalar values 64 to 128 to
be completely transparent. The resultant volumetric ren-
der shows the highly opaque centre of the volume and
the transparent outer part of the volume. In Figure 7, the
transfer function is a trapezoidal function centred on scalar
value 164, with a narrow top and wide base. This has the
effect that only scalar values in the range 128–200 have
any appreciable opacity and only a shell of the volume
data is visible in the rendering.

5 Performance

We remind the reader that this project was motivated by
a present and perceived future need to render volumetric
datasets larger than typical workstation memories at inter-
active frame rates. We have described a technique which
enables us to break apart the data volume into a num-
ber of smaller pieces which are rendered independently
as overlapping images then composited together to pro-
duce the final view. We now consider the performance of
our system, which can broadly be broken down into the
following areas: single-processor rendering performance,
network transfer (and compositing), and scalability. Since
the controlling interface of dvr is written in Tcl script,
we were able to acquire accurate and repeatable measure-
ments of the performance of dvr by writing and running
a short script to load a particular volume, configure the
viewport and submit frames for rendering.

5.1 Single-Processor Rendering Performance

A single 2 GHz Pentium 4 CPU can render at
∼7 Mvox s−1. This is measured using our rendering core
(i.e. the over operator) applied to a dataset where every

voxel contributes to the output image. A volume such
as this, containing no fully opaque or completely trans-
parent voxels, is suited to performance testing because
the time to render the volume will generally be indepen-
dent of the viewing angle. Practical applications of VR
to noisy astronomy datasets will, however, usually entail
a transfer function which arranges for many fully opaque
or completely transparent voxels, in which case the core
rendering speed may be substantially improved.

5.2 Network Transfer and Compositing

For distributed data rendering, image transfer time may
contribute significantly to the overall rendering time and
will depend on the network structure. For our tests we
used the Swinburne Centre for Astrophysics and Super-
computing facility, which is a Beowulf-class cluster of
Intel architecture machines running Linux. The cluster
network is 1000 Mb s−1 ethernet (‘Gigabit’) and the clus-
ter is connected to the front-end interface machine by
standard 100 Mb s−1 ethernet (‘100 Meg’).

For our relatively fast network, Figure 8 shows that
the application of window-length encoding to inter-
mediate images (Section 3.4) yields unmeasurable image
propagation times (i.e. less than one ms). Without com-
pression, it would take ∼10 ms to send the intermediate
images (500× 500 pixels) over Gigabit. The window-
length encoding and decoding operations take ∼1 ms
each. Compositing, including the implicit handling of the
window-length encoded images, takes around 10 ms per
input intermediate image with our optimisations. Speeds
are dataset and viewpoint dependent: views within the
volume produce large images which cannot be window
encoded, while images with contiguous colour runs (e.g.
distant views of the volume) are efficiently run-length
encoded.

5.3 Scalability

We can estimate the largest volume that can be rendered
with N processors, given a base voxel rendering rate of
Rvox in voxels per second. Ignoring parallelisation costs
(e.g. the increase in network traffic and in the number



308 B. Beeson et al.

compositor

renderers

(remote) workstation

time to render: 0.045 s

time to (WL) encode: <0.001 s

time to send: <0.001 s

time to composite: 0.040 s

time to (RL) encode: <0.001 s

time to send: 0.080 s

time to decode: 0.014 s

total time: ~0.180 s

Figure 8 Breakdown of approximate time accrued in rendering, transferring and compositing a 500× 500
image and delivering it to the display node. A fast cluster network is assumed, such that the main contributor
to the rendering time is the transfer of the final rendered image to the display node over a standard network
link.

of compositing processes with N), a cubic data volume
of sidelength l can be rendered at a rate of r frames per
second according to:

l3 = Rvox
N

r
(7)

For our measured Rvox� 7 Mvox s−1, a required rate of
five frames per second and 16 rendering processors, we
deduce that a volume of dimensions 280× 280× 280 can
be rendered interactively. For a binary tree, a total of
31 processors would be required (16 renderers and 15
compositors) and we point out that this could easily be
accommodated on the relatively commonplace 16-node
dual processor cluster. Even with our distributed system,
a Gvox volume (i.e. 1024× 1024× 1024 voxels) is still
expected to require approximately 150 rendering proces-
sors to produce frames at the rate of one per second.
However, real-life frame rates are likely to be much better
than this because often only a small fraction of voxels are
unblanked and contribute to the VR transfer function.

To verify the scalability of our system, we generated
cubic data volumes between 643 and 10243 in size and
rendered them using between 3 and 31 nodes. The data
volumes were filled with random data, a flat transfer func-
tion was applied, and a camera path was selected so that the
rendered image completely filled the 512× 512 pixel out-
put image for all viewing angles. These conditions ensure
consistent worst case performance because all voxels must
be rendered and no encoding or compositing savings are
possible.Table 1 shows the resultant frame rendering times
averaged over ten frames, as well as an indication of the
parallel efficiency as a function of volume size. Parallel
efficiency measures the rendering performance per node

Table 1. Measured total rendering time in seconds and par-
allel efficiency for fully-sampled, cubic volumes on the Swin-

burne facility

The rendering tree is a binary tree in all cases (e.g. 7 nodes
comprises one head compositor, two compositors and four

renderers)

Volume size Number of nodes Parallel efficiency

3 7 15 31 for 31 c.f. 3 nodes (%)

643 0.20 0.18 0.28 0.41 5
1283 0.46 0.32 0.30 0.40 11
2563 2.8 1.5 0.81 0.56 48
5123 21 11 5.54 3.9 52

10243 290 85 43 21 134

for the 31-node case as a percentage of that for the 3-
node case. Table 1 shows that for small volumes, parallel
rendering is very inefficient and not worthwhile, but for
volumes upwards of 2563 voxels parallel rendering offers
an excellent performance gain with efficiencies of∼50%.
For a binary rendering tree, the maximum parallel effi-
ciency is ∼75% (rather than 100%) because for small
trees two-thirds of the nodes are rendering nodes while
for large trees only half of the available nodes will be
rendering with the remainder attending to the generally
less demanding task of compositing. The 10243 volume
shows an unusually high efficiency simply because there is
insufficient memory in the small rendering tree configura-
tions to keep even the sub-divided volume data in physical
memory and so the low-node configurations suffer from
expensive swapping to disk.

In Table 2 we briefly show the effect of rendered
image size on rendering rate. Internal timings showed



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 309

Table 2. Time (in seconds) to render output
frames of different sizes for an input volume of
1283 rendered with a binary tree spanning seven

nodes

Rendered image size Frame rendering time (s)

100× 100 0.32
256× 256 0.36
512× 512 0.44

the rendering time itself to be steady at ∼0.25 s per
frame, independent of the rendered image size. The gains
for smaller images therefore arise almost exclusively
from the encoding and compositing optimisations already
discussed.

Finally we tested the ability of our system to han-
dle a very large volume. We generated a filled volume
of dimensions 2048× 2048× 2048 and rendered it using
a tree comprising one head compositor and 32 rendering
nodes. Rendering the same camera path as for the above
tests, ensuring that the 512× 512 output image was fully
sampled, yielded an average frame rendering time of 85 s.
While this is not an interactive frame rate, it lies within a
factor of two of our predicted rendering rate (Equation 7)
and to our knowledge is the largest dataset volumetrically
rendered by an otherwise interactive system. This chal-
lenging rendering task consumed >800 MB of memory
on each of the 32 nodes.

5.4 External Comparisons

Here we compare our distributed data volume rendering
rate with recent results from the high performance com-
puting scene. Snavely, Johnson, & Genetti (1999) present
timings for the SampleRay rendering code (based on
MPIRE7) running on two different supercomputer archi-
tectures, the Cray T3E and the Tera MTA. They rendered
a 2563 sub-volume of the Visible Male dataset, from the
Visible Human Project8, using between one and sixteen
processors of a shared memory system rather than a clus-
ter. They rendered to output images 400× 400 pixels in
size. In Figure 9 we plot their timings against our most sim-
ilar tests from Table 1, i.e. a filled 2563 volume rendered
to fill a 512× 512 pixel output image. The comparison is
extremely favourable to our system, despite the fact that
tests on our system were deliberately configured to give
worst-case values, and the obvious advantage of their
shared memory system for extremely low latency inter-
process communication,

The TeraVoxel project at the California Institute of
Technology9 has as its goal the capture and visualisa-
tion of fluid volumes at up to 10243 volume elements
per second. Using specialised volume rendering hardware

7MPIRE (Massively Parallel Interactive Rendering Environment) is
a distributed VR system available on Cray and SGI platforms with
specialised hardware; http://mpire.sdsc.edu.
8http://www.nim.nih.gov/research/visible/visible_human.html
9http://www.cacr.celtech.edu/projects/teravoxel/

0.1

1

10

100

0 10 20 30 40

SampleRay (Cray T3E)
SampleRay (Tera MTA)
dvr (Pentium4 cluster)

Number of processors

R
en

de
rin

g 
tim

e 
(s

)

Figure 9 Rendering time comparison between the SampleRay
renderer running on Cray T3E and Tera MTA systems and our
dvr renderer running on a cluster of Pentium 4 workstations. The
SampleRay timings are from Snavely et al. (1999) for a 2563 cutout
of the Visible Male dataset (The Visible Human Project) rendered
into a 400× 400 output image; the dvr timings are taken from
Table 1 for rendering a filled 2563 volume into a 512× 512 output
image.

(eight VolumePro 500 systems built by TeraRecon inter-
connected with HP-Compaq’s Sepia for hardware-based
compositing), they have successfully rendered a 5123 data
volume at 24 frames per second which is more than 100
times faster than our worst-case measurements for a 7-
node rendering tree! This leaves no doubt about the merits
of specialised hardware over general clusters for this kind
of work, but other than being fiendishly expensive and sin-
gular in purpose, this hardware system, like most volume
rendering systems that we know of including SampleRay,
is not a distributed data system as all nodes must store
the entire dataset in memory. In practice, today’s research
groups seem considerably more likely to have access to
Beowulf clusters than to facilities like the TeraVoxel sys-
tem, and so software implementations of VR such as ours
which run on commodity hardware should remain useful
for at least a few years.

6 Applications

The potential applications of dvr are many and varied.
Here we give three examples drawn from theoretical and
observational astronomy. In addition to these examples,
dvr has also been used to render multidimensional pulsar
search and timing data collected at the Parkes 64 m radio-
telescope and magnetic resonance images of the human
brain. Any volumetric data can be visualised with dvr
once it is converted to the appropriate, simple input format.

6.1 Spectral Line Data Cubes

The work described in this paper was motivated by
the need to visualise spectroscopic data acquired using
the Multibeam facility at the CSIRO’s Parkes radiotele-
scope. However, it might equally have been prompted
by the need to display spectral line data from synthesis
radiotelescopes such as the Australia Telescope Compact
Array, or from integral field unit multi-object spectro-
graphs which are becoming commonplace on the world’s



310 B. Beeson et al.

major optical telescopes. In each case, an intermediate
product of the data reduction process is the spectral line
data cube, a 3-dimensional volume of data whose axes are
(normally) latitude and longitude on the sky and one of
frequency, wavelength or derived radial velocity. Spectral
line data cubes typically comprise 107–109 voxels and so
lend themselves well to distributed data volume rendering.

As an example, we present in Figure 10 a new volume
rendering of a deep neutral Hydrogen (Hi) emission image
of the Fornax cluster of galaxies. The 1482× 380 voxel
data set has been kindly provided to us by M. Waugh in
advance of its publication. We show only one projection of
the data but with different transfer functions to highlight
different components of the data. In Figure 10, galaxies
appear as ‘blobs’ extending diagonally bottom-left to top-
right which corresponds to the frequency or line-of-sight
velocity axis of the data cube. The feature extending all the
way along this axis is the radio continuum source FornaxA
which induces baseline ripple in spectra taken in its vicin-
ity. The two angular coordinates on the sky lie at right
angles to this axis, i.e. diagonally bottom-right to top-left
and into the page.

Hi emission images of galaxy clusters such as Fornax
are extremely sparse. That is, the overwhelming major-
ity of the voxels in the data cube are noise and only a

Figure 10 Volume renderings of the deep Hi Fornax galaxy cluster cube showing the capacity of different transfer functions to emphasize
different features. Top-left: simple ramp-function which applies close to zero opacity to the noise and complete opacity to the highest values
reveals most of the spectral line sources in the data plus the strong continuum source Fornax A. Top-right: a top-hat of moderate opacity placed
over strong negative values brings out the negative values present in the baseline ripple induced by Fornax A. Bottom-left: a top-hat of very
low opacity placed over the noise illuminates the entire data volume and is complemented by a top-hat of very high opacity placed over only
the highest voxel values, revealing the neutral hydrogen bright members of the cluster. Bottom-right: two top-hats, but with reduced opacity in
the noise regime and a wider top-hat covering the source emission regime; the colourmap has also been modified.

tiny fraction of the volume data contains astronomically
interesting values. This is in stark contrast to Hi emis-
sion images of our own Galaxy, its satellite Magellanic
Clouds and its population of discrete, high velocity clouds
which can be found over most of the sky. Images of these
features can be beautiful, but very complicated and diffi-
cult to interpret without advanced visualisation software.
In Figure 11, we present a volume rendering of an Hi emis-
sion image of the galaxy NGC 3109, including Galactic
and high velocity gas. The data were taken from Barnes
& de Blok (2001) and the complex nature of the field is
immediately evident in the volume rendering.

6.2 N-Body Cosmology

Traditionally, N-body data is visualised by individually
projecting the N points to the 2-dimensional plane of the
screen and colouring the points according to some prop-
erty other than position, for example, mass or line-of-sight
velocity. In such displays, foreground particles generally
obscure background particles and integrated line-of-sight
quantities are not easily assessed. To display the true
volumetric nature of N-body realisations, a VR system
such as dvr is needed. To this end, we obtained a sin-
gle time-step realisation of the Universe generated by
the multi-level adaptive particle mesh (MLAPM; Knebe,



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 311

Green, & Binney 2001), comprising some two million par-
ticles, each tagged with a measure of the local density.
We gridded the sampled densities into a 2563 volume and
submitted the data to dvr for rendering. A script was used
to control the camera movement and the resultant movie
(composited from 130 frames) is available in QuickTime

NGC 3109 (403 km/s)High velocity gas (~200 km/s)

Galactic gas (~0 km/s)

Figure 11 Perspective volume rendering of an Hi emission image
of the galaxy NGC 3109, Galactic gas and the intervening (in
velocity space) high velocity gas.

Figure 12 Four views of a single time-step realisation of the Universe generated by the MLAPM code (Knebe et al. 2001). Two million
samples of the matter density in the Universe were smoothed into a 2563 volume and rendered using dvr.

format from http://www.aus-vo.org/software.html. Four
frames from the animation are shown in Figure 12.

The application of VR, and specifically of dvr, to
cosmological studies presents interesting possibilities for
future work. For example, the periodic boundary condi-
tions which constrain most N-body simulations allow the
data to be translated within the bounding box of the sim-
ulation and wrapped from one edge to the opposite edge,
to provide a different but equally valid realisation. With
some careful thought, the shear-warp algorithm may lend
itself to a modification whereby the shear is replaced with a
shear-and-wrap (thence the ‘shear-wrap-warp’algorithm),
such that in addition to controlling the view direction, the
user is able to choose different translations of the simu-
lation realisation within a VR environment. One possible
implementation of this scheme within a distributed data
system like dvr would be to divide the data only along the
axis nearest the view direction such that each node has a
set of data spanning two axes of the volume.

6.3 N-Body Galaxy Formation and Evolution

As a second example of using VR to visualise the results
of N-body simulations, we present the final time step
in an interaction between the Milky Way galaxy and a
satellite galaxy. A parallel tree smoothed particle hydro-
dynamic code (Kawata 1999) was used to simulate a
point-source satellite galaxy inducing a high-latitude warp



312 B. Beeson et al.

Figure 13 Four views of the final time-step of a simulation of the perturbation of the Milky Way disk by an intruder dwarf galaxy, generated
by a smoothed particle hydrodynamic code (Kawata, Thom, & Gibson, in prep.). 100 000 particles were smoothed into a 1283 volume and
rendered using dvr.

in the disk of the Milky Way galaxy (Kawata et al. 2003,
in prep.). The simulation included 200 000 halo parti-
cles, 80 000 disk particles and 20 000 bulge particles. The
bulge and disk particles were gridded into a 1283 vol-
ume which was rendered using dvr. A 130-frame movie
is available in QuickTime format from http://www.aus-
vo.org/software.html and four frames from the animation
are shown in Figure 13.

7 Conclusion

We have described the extension of the shear-warp VR
algorithm with perspective to a distributed data volume
rendering system. Sub-volumes of the data are distributed
to rendering nodes which produce intermediate images for
compositing. Rendering and compositing uses the asso-
ciative over operator to yield a valid final image. Our
software, dvr, performs exceedingly well compared to
other state-of-the-art systems, including shared memory
supercomputers, and we have reported the first successful
volumetric rendering of an 8 Gvox volume with non-
specialised hardware. dvr is available for download from
the software section of the Australian Virtual Observatory
website, http://www.aus-vo.org.

Acknowledgments

We acknowledge the Victorian Partnership for Advanced
Computing for supporting this project through a 2002
Expertise Grant. We express our gratitude to Juergen
P. Schulze for sharing his rendering core with us and allow-
ing us to redistribute it. We also thank P. Lacroute and
M. Levoy for kindly giving us permission to reproduce
Figures 1 and 2 from Lacroute & Levoy (1994) and
D. Kawata and A. Knebe for allowing us to use their new
N-body simulations as example data sets. Finally we thank
the referee for valuable comments on the manuscript and
for pointing out the possible use of boundary conditions
in simulation realisations.

References

Barnes, D. G. et al. 2001, MNRAS, 322, 486
Barnes, D. G. & de Blok, W. J. G. 2001, AJ, 122, 825
Blinn, J. 1994, IEEE Computer Graphics and Applications, Septem-

ber 1994, 83
Calabretta, M. R. & Greisen, E. W. 2002, A&A, 375, 1077
Drebin, R. A., Carpenter, L. & Hanrahan, P. 1988, Computer

Graphics, 22, 65
Gooch, R. E. 1995, in Astronomical Data Analysis Software and

Systems V, ASP Conf. Series vol. 101, eds. G. H. Jacoby &
J. Barnes, (San Francisco: ASP), 80

Halsey, R. & Chapanis, A. 1951, J. Optical Soc. of America, 41,
1057.



A Distributed Data Implementation for Visualisation of Large Astronomical Cubes 313

Kawata, D. 1999, PASJ, 51, 931
Kawata, D. 2003, in preparation
Knebe, A., Green, A. & Binney, J. 2001, MNRAS, 325, 845
Lacroute, P. & Levoy, M. 1994, in SIGGRAPH ’94: Conference

Proceedings, ed. S. Cunningham, (New York: ACM), 451
Oosterloo, T. 1995, PASA, 12, 215
Ortiz, P. F. 2003, http://barbara.star.le.ac.uk/datoz-bin/datoz2k
Porter, T. & Duff, T. 1984, in SIGGRAPH ’84: Conference Proceed-

ings, ed. H. Christiansen, (New York: ACM), 253
Schulze, J. P. & Lang, U. 2002, in Proceedings of the Fourth Euro-

graphics Workshop on Parallel Graphics and Visualization, eds.

D. Bartz, X. Pueyo & E. Reinhard, (Aire-la-Ville: Eurographics
Organization), 61

Snavely, A., Johnson, G. & Genetti, J. 1999, in Proceedings of
the High Performance Computing Symposium — HPC ’99, ed.
A. Tentner, (SCS), 59

Sterling, T. L., Savarese, D. F., Becker, D. J., Dorband, J. E.,
Ranawake, U.A. & Packer, C.V. 1995, in Proceedings of the 1995
International Conference on Parallel Processing, ed. P. Banerjee,
(Boca Raton: CRC Press), I:11

Stoughton, C. et al. 2002, AJ, 123, 485
York, D. G. et al. 2000, AJ, 120, 1579


