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Initial Test of a Bayesian Approach to Solar Flare Prediction
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Abstract: A test of a new Bayesian approach to solar flare prediction is presented. The approach uses the
past history of flaring together with phenomenological rules of flare statistics to make a prediction for the
probability of occurrence of a large flare within an interval of time, or to refine an initial prediction (which may
incorporate other information). The test of the method is based on data from the Geostationary Observational
Environmental Satellites, and involves whole-Sun prediction of soft X-ray flares for 1976–2003. The results
show that the method somewhat over-predicts the probability of all events above a moderate size, but performs
well in predicting large events.
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1 Introduction

The space weather effects of large solar flares motivate
flare prediction. For example, the soft X-ray flux due
to large flares causes increased ionisation of the upper
atmosphere, which can interfere with high frequency
radio communication. There is considerable interest in
knowing when such short-wave fadeouts are likely to
occur, and Australia’s Ionospheric Prediction Service
(IPS) issues predictions on this basis.1 Other agencies issu-
ing flare predictions include the US National Oceanic and
Atmospheric Administration (NOAA)2 and NASA.3

Existing methods of prediction are probabilistic, and
rely, for example, on the classification of physical char-
acteristics of active regions and historical rates of flaring
for regions with a given classification (McIntosh 1990;
Bornmann & Shaw 1994). One weakness of classification-
based approaches is that regions with a given classification
may exhibit a wide range of flaring rates. The method
of McIntosh (1990) also considers other information
including the number of large flares already produced
by an active region (the tendency of an active region
which has produced large events to subsequently pro-
duce large events is called persistence), but this is done
in an ad hoc way. No consideration is given to the impor-
tant information in the number of small events already
observed.

A new approach to flare prediction (Wheatland 2004)
exploits the history of observed flaring together with sim-
ple phenomenological rules of flare statistics to make a
prediction, or to refine an existing prediction. The basic
method is as follows. It is well known that the size dis-
tribution of flares (e.g. the distribution of peak soft X-ray

1 www.ips.gov.au
2 www.sec.noaa.gov/ftpdir/latest/daypre.txt
3 beauty.nascom.nasa.gov/arm/latest/

flux) follows a power law (e.g. Crosby, Aschwanden, &
Dennis 1993):

N(S) = λ1(γ − 1)S
γ−1
1 S−γ , (1)

where N(S) is the number of events per unit size S and per
unit time, λ1 is the total rate of events above size S1, and
γ is the power-law index. Suppose we are interested in the
probability of a large event (S ≥ S2) occurring in a time
�T . The expected rate of events above S2 is, according to
equation (1),

λ2 = λ1

(
S1

S2

)γ−1

. (2)

Flare occurrence may be described on short timescales
as a Poisson process in time (e.g. Moon et al. 2001) and
on longer timescales as a time-dependent Poisson process
(e.g. Wheatland 2001).According to Poisson statistics, the
probability of at least one large event in time �T is

ε = 1 − exp(−λ2�T). (3)

To apply these formulae it is necessary to estimate λ1

and γ from data, and hence to estimate ε. We adopt a
Bayesian approach, in which ‘estimating’ a parameter
means calculating a posterior probability distribution for
the parameter, given available data and any prior informa-
tion (e.g. Jaynes 2003). We assume that a sequence of M

events with sizes s1, s2, . . . , sM (all larger than S1) have
been observed to occur at times t1 < t2 < · · · < tM respec-
tively. The power-law index γ may be approximated by
the maximum likelihood value (Bai 1993)

γ∗ = M

ln π
+ 1, where π =

M∏
i=1

si

S1
. (4)

To estimate the rate we adopt a piecewise constant Poisson
model. Hence we need to identify the most recent interval
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T ′ during which the rate is constant, and we assume that
M ′ ≤ M events occurred during that time. One approach to
the determination of the interval T ′ is to use the ‘Bayesian
blocks’ procedure (Scargle 1998), which is discussed in
more detail below. Based on M ′, T ′, and γ∗, the posterior
probability distribution for ε is (Wheatland 2004)

P(ε) = C[−ln(1 − ε)]M ′
(1 − ε)(T

′/�T)(S2/S1)
γ∗−1−1

× �

[
− ln(1 − ε)

�T

(
S2

S1

)γ∗−1
]

, (5)

where �(λ1) is the prior distribution for λ1, i.e. the distri-
bution we would assign to λ1 in the absence of any data,
and C is the normalisation constant, determined by the
requirement

∫ 1
0 P(ε)dε = 1. The mean of P(ε) provides the

estimate of the probability of at least one large event within
time �T , and the standard deviation of the distribution
provides an estimate of the associated uncertainty.

2 The Test

As a basic test of the new approach to prediction, equa-
tion (5) was applied to the NOAA Solar Event Lists of
X-ray flares observed by the Geostationary Observational
Environmental Satellites (GOES) for 1975–2003.4 For
each day, whole-Sun flare prediction was performed for
the next day (�T = 1 d).

The relevant measure of size, S, of the GOES events is
the peak soft X-ray flux in the 1–8 Å band. The choice of
threshold S1 = 4 × 10−6 W m−2 was based on inspection
of the distribution of peak soft X-ray flux for the entire
dataset. Figure 1 shows the distribution, plotted in dif-
ferential form (upper panel) and cumulative form (lower
panel). The threshold size S1 is indicated by the vertical
solid line. Events above this size are observed to be dis-
tributed approximately as a power law, and the thick solid
lines in each panel indicate the power-law model, with the
maximum likelihood power-law index γ∗ ≈ 2.15 ± 0.01.
For peak fluxes below the threshold there is departure from
power-law behaviour due to problems with event selection
against the time-varying soft X-ray background.

Predictions were made for each day for events above
size S2 = 10−5 W m−2 (‘M class’ and larger flares) and
for events above size S2 = 10−4 W m−2 (‘X class’ flares)
using equation (5). The corresponding prediction proba-
bilities for a given day are labelled εM and εX respectively.
It should be noted that these values are not independent,
since X class flares are a subset of events above M class.

The predictions used data within a window of time
spanning one year prior to each day. For each day, equa-
tion (4) was applied to the one-year window of data prior
to the day to determine γ∗. Then the Bayesian blocks pro-
cedure was applied to the same data to determine a decom-
position into a piecewise-constant Poisson process. This
procedure returns a sequence of times tB0 < tB1 < · · · <
tBK at which the rate is determined to change (where tB0

and tBK are the start- and end-time of the window), and

4 ftp://ftp.ngdc.noaa.gov

Figure 1 Upper panel: differential distribution of peak flux
for GOES events 1976–2003 (histogram), and the power-law
model distribution (thick line). Lower panel: cumulative distribution
for all events (joined points), and the model (thick line). In both
panels the threshold S1 for power-law behaviour is shown by the
vertical line.

a corresponding sequence λB1, λB2, . . . , λBK of rates. The
last Bayesian block was used to determine T ′ and M ′:
namely T ′ = tBK − tB(K−1) and M ′ = λBKT ′.

The data in every Bayesian block but the last was
used to construct the prior �(λ1). A model form
�(λ1) = a exp(−bλc

1) was chosen for the prior, and the
parameters a, b, and c were determined by requiring that
the first three moments of this model distribution match
the first three moments of the data, estimated from the
Bayesian blocks decomposition. Specifically we required
that the model distribution was normalized, and that it
had a mean rate and mean square rate equal to the corre-
sponding estimates from the Bayesian blocks. These three
conditions uniquely determined values of a, b, and c.

3 Results

Figure 2 illustrates the results of the test on a year by
year basis for 1976–2003 (the results for 1975 are omitted
because the predictions are made using less than a year of
previous data). The upper panel shows the predictions for
M class (and larger) flares. The histograms represent the
observed number of days on which there was at least one
M class flare (or larger). The diamonds represent the sum
of the εM values for all days within the given year, which is
the predicted number of days on which there should be at
least one event of M class or larger. The lower panel shows
the same display, but for events of X class. Uncertainties
are shown for the predicted values, based on summation
of the individual prediction uncertainties in quadrature.

The upper panel of Figure 2 indicates that the values of
εM are systematically too large. More quantitatively, we
find that the average value of εM over all days (1976–2003)
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Figure 2 Upper panel: observed/predicted numbers of M (or
larger) event days (histogram/diamonds). Lower panel: the same
but for X event days.

is 0.320, whereas the observed value (the fraction of days
on which there was at least one M class event) is 0.264.
The lower panel of Figure 2 indicates that the method has
done quite well in predicting X class events. In fact the
average value of εX for 1976–2003 is 0.040, whereas the
observed value is 0.036.

Figure 3 gives a more detailed display of the results of
the test for all years (1976–2003) in the form of a pair of
‘reliability plots’, in which the horizontal axis shows the
forecast probabilities εM or εX for each day (in bins of
0.05), and the vertical axis shows the true probability for
flaring on the given days, estimated from the observed
number of event days. This is the Bayesian estimate
assuming binomial statistics and a uniform prior: if there
are R days with at least one event out of a total of S days,
the estimate for the probability is p = (R + 1)/(S + 2)

and the corresponding error is [p(1 −p)/(S + 3)]1/2 (e.g.
Jaynes 2003, p. 165). Perfect prediction corresponds to the
solid 45◦ line on the plot. The upper panel of Figure 3 is
the reliability plot for M (and larger) event prediction, and
the lower panel is the reliability plot for X event predic-
tion. The upper panel confirms that the predictions for M
class events are systematically too large, although it shows
that the effect is only associated with days on which εM is
larger than about 0.25. The lower panel indicates that the
predictions for X class flares are quite good for all values
of εX, although the method is conservative, in that it does
not assign values larger than about 0.5.

It is interesting to compare these results with predic-
tions made by NOAA. Statistics are available for NOAA
predictions for 1987–2002.5 The NOAA results indicate
a very serious over-prediction of X class events. During
1987–2002 the NOAA predictions imply that there should

5 www.noaa.sec.gov/verification/

Figure 3 Upper panel: reliability plot for prediction of M events
and above. Lower panel: the same but for X events.

be 372.5 X event days, when in fact there are 200 such
days. The present method predicts 233.8 X event days for
1987–2002, which is a considerable improvement over
the NOAA result. For M (and larger) events, the NOAA
results show over-prediction similar to the results obtained
with the present method.A more detailed comparison with
NOAA predictions will be presented in a future paper
(Wheatland 2005).

4 Discussion

A Bayesian approach to flare prediction (Wheatland 2004)
has been tested for whole-Sun prediction of GOES soft
X-ray events, based on the NOAA Solar Event Lists for
1975–2003. The method is found to over-predict events of
M class and above, but performs quite well for prediction
of X class events.

There are several possible reasons for the over-
prediction of events above M class. One possibility is that
the method is systematically late in detecting the decline
in rate associated with the decay of a large active region,
or the rotation of a large active region off the disk. The
method uses the Bayesian blocks procedure to detect rate
changes, and is always trying to ‘catch up’ with what the
Sun is doing. A specific limitation of the Bayesian blocks
method is that it must have at least one event in a block,
so that the rate is never identically zero. This limitation
leads to overestimation of the rate at times of very low
activity. It should also be noted that the existing Bayesian
blocks procedure is not guaranteed to find an optimal
decomposition — in future this procedure will be replaced
by an optimal algorithm recently devised by J. D. Scargle
(2003, private communication). Another possibility is that
there is a bias in each individual prediction which becomes
apparent in the analysis of a large number of predictions.
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Such a bias will become less serious if each individual
prediction is more accurate. The fractional error in each
prediction goes as (M ′)−1/2 (Wheatland 2004), where M ′
is the number of events associated with the estimation of
the rate above size S1. This error becomes smaller with
increasing M ′, i.e. if a smaller S1 can be chosen. It should
be noted that the GOES event lists are a relatively poor
choice for the present purpose because the time varying
soft X-ray background means that a relatively large S1

must be used (see Figure 1).
The GOES event lists also have other shortcomings as

a basis for prediction from event statistics. Besides the
departure from a power law at small sizes, it is likely the
lists are incomplete above the nominal threshold S1, e.g.
due to the difficulty of distinguishing two flares occurring
close together in time (Wheatland 2001). This is unlikely
to be important for the test described here, provided that
the size distribution obeys a power law above the thresh-
old, since both prediction and validation of the prediction
rely on the same (possibly incomplete) lists.Another prob-
lem with the GOES event lists is that the GOES peak fluxes
are not background subtracted, so that the intrinsic flux due
to an M class event at a time of low activity, when the back-
ground is low, is larger than the intrinsic flux due to an M
class event at a time of high activity, when the background
is high. However, again this is not particularly important
to the present method provided that the size distribution
for observed events is not distorted from a power-law form
by this effect. The use of a previous year of data to make
a prediction allows the possibility of incorporating varia-
tion in the power-law index with the solar cycle (e.g. due
to this effect) but in fact we find no evidence of such a
variation. In subsequent work the method will be applied
to more accurate event catalogs.

The present test is limited to whole-Sun prediction. In
the future the method will also be applied to individual
active regions, and other prior information on the rate (e.g.
the McIntosh classification of the associated sunspots) will
be incorporated. However we note that, even in this simple
form, the method has out-performed NOAA predictions
for X class events.

Finally we note that automated predictions, based on
this method, are now published on the web.6 Predictions
are made each day using the latest NOAA solar event lists.
The web pages include a running score of how reliable the
published predictions are, in the form of automatically
updated reliability plots.
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