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Abstract: Gravitational lensing can magnify a distant source, revealing structural detail which is normally
unresolvable. Recovering this detail through an inversion of the influence of gravitational lensing, however,
requires optimisation of not only lens parameters, but also of the surface brightness distribution of the source.
This paper outlines a new approach to this inversion, utilising genetic algorithms to reconstruct the source
profile. In this initial study, the effects of image degradation due to instrumental and atmospheric effects are
neglected and it is assumed that the lens model is accurately known, but the genetic algorithm approach can
be incorporated into more general optimisation techniques, allowing the optimisation of both the parameters
for a lensing model and the surface brightness of the source.
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1 Introduction

Gravitational lensing is an important astrophysical tool,
mapping the distribution of matter on many scales and
revealing typically unresolved detail of distant sources
through magnification (see Kochanek, Schneider, &
Wambsganss 2004 for a review of lensing physics). Early
studies concentrated upon the properties of multiply-
imaged quasars to determine the underlying mass distri-
bution within the lensing galaxy. However, the point-like
nature of quasars (which results in point-like images)
present only a limited amount of constraints on the lensing
mass distribution, with a number of degenerate solutions
able to explain the observed configuration (Kent & Falco
1988; Schneider et al. 1988; Kochanek 1991).

If the source in a gravitational lensing is extended, the
resulting image is also extended and each resolution ele-
ment effectively provides a constraint on any modelling.
Any modelling, however, becomes more complex than the
simple case of point-like lensing which asks the ques-
tion: what distribution of mass in the lensing can account
for the observed image locations and brightnesses? With
an extended source, the question has to be rephrased as:
what distribution of mass in the lensing galaxy and dis-
tribution of brightness in the source can account for the
observed image configuration? To answer this question,
more novel approaches to gravitational lensing modelling
have been undertaken (Kochanek et al. 1989; Kochanek
& Narayan 1992; Ellithorpe, Kochanek, & Hewitt 1996;
Wallington, Kochanek, & Narayan 1996; Warren & Dye
2003; Wucknitz 2004; Wayth et al. 2005; Dye & Warren
2005). These techniques typically determine not only the
mass distribution in the lensing galaxy, but also the surface
brightness distribution in the source.

Given the form of the lens and the source, it is relatively
straightforward to compute the resultant image by using
a simple ray tracing method. The inverse problem, which
is what occurs in practice, is much more difficult to solve.
Furthermore, inverse problems are fraught with the ques-
tion of solution uniqueness. To this end, it is advisable
to tackle a particular problem with a range of inver-
sion techniques and compare the various outcomes; if all
approaches converge to the same result, some faith can be
given to the overall solution. Currently, the repertoire of
gravitational lens inversion techniques is relatively small
and so this paper presents an alternative approach to grav-
itational lens modelling, utilising genetic algorithms to
reconstruct the source. In this initial investigation of this
approach, the effects of image degradation through instru-
mental and atmospheric effects (i.e. seeing) are neglected,
although these can be implemented in a straightforward
fashion. The approach is described in detail in Section 2,
considering a perfect, noiseless image. Section 3 dis-
cusses the influence of the various parameters influencing
the inversion technique, also considering reconstruction
of noisy images. Section 4 considers the more general
problem of the optimisation of both the source surface
brightness distribution and the parameters governing the
mass distribution in the lensing galaxy. This paper closes
with the conclusions which are presented in Section 5.

2 Approach

2.1 Genetic Algorithms

Genetic algorithms are an approach to problems of optimi-
sation that take their inspiration from evolutionary biology
(for a popular review of genetic algorithms and other
aspects of biological computing, see Levy 1993). The
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basic approach, presented in some detail in Charbonneau
(1995), mimics the evolutionary struggle of life, with dif-
ferent individuals having different probabilities of passing
on their genes to the next generation, with the proba-
bilities dependent on the environment and the physical
characteristics of the organism (which in turn depend on
the genes). Humans have long used a basic knowledge of
heredity to breed for desirable traits in animals and crops,
even before Charles Darwin proposed his theory of natural
selection (Darwin 1859). Genetic algorithms take this idea
and apply it by breeding better solutions to the problem at
hand.

In terms of the algorithmic approach, several features
are required:

• Encoding: Each potential solution to a problem is
encoded into a genome. This is often represented as
a series of digits, but can be a simple bit string.

• Expression:This decodes the information in the genome
into a phenotype. For many applications, this decodes
the genome into a series of real numbers that are used
as parameters for a particular model.

• Fitness evaluation: This compares the phenotype of the
genome to the problem, assigning a quantitative mea-
sure of the goodness of fit of the potential solution (e.g.
a standard χ2 measurement).

With these, an initial population of genomes, each rep-
resenting a potential solution to the problem at hand,
can be generated. Typically this involves assigning each
genome with a random sequence of digits or bits. In evolv-
ing this population to the next generation, several steps are
involved:

(a) Ranking and Selection Pressure: The goal of a genetic
algorithm is to produce subsequent generations of
solutions with greater fitness by ensuring that the
fittest member of a current population will pass their
genetic material on to the next generation.As noted by
Charbonneau (1995), as evolution proceeds, the aver-
age and maximum fitness of a population continually
increases. The spread in fitness, however, decreases,
with the overall population becoming homogeneous.
With such uniform fitness in a population, simple
selection on fitness alone effectively samples ran-
domly from the population, and evolution stalls. To
circumvent this, selection must be made relative to
the current population. To this end, the population is
ranked in terms of its fitness, with the least fit being
assigned a value of 0, whereas the most fit possess
a value of 1. Members are selected from this current
generation with a probability dependent upon their
ranking, such that

p ∝ (ranking)β, (1)

where β is called the selection pressure. If β = 0,
the probability for selection is uniform throughout
the population, while larger values of β preferentially
select only the fittest members in the population.

(b) Elitism: The fittest member of the current generation
is cloned and represents the first member of the next
generation. This ensures that the maximum fitness of
subsequent generations can never fall.

(c) Breeding: Further members of the next generation
are produced by breeding the members of the cur-
rent generation, with the genetic information of the
current population used to determine the genomes of
the next. The probability that an individual will breed
is based upon its ranking and the selection pressure
as outlined previously. Two breeding strategies are
adopted: asexual and sexual reproduction. With asex-
ual reproduction, a selected member of the current
generation is cloned, preserving the genetic informa-
tion, to provide a new member of the next generation.
In sexual reproduction, two members of the current
generation are selected and a new individual is formed
with the combination of their genetic material; a ran-
dom portion of the genome of one parent is ‘copied
and pasted’ over the corresponding part of the other
parent’s genome to produce the resulting offspring
genome; this allows the genetic material of successful
organisms to mix. Whether the creation of an off-
spring is due to sexual reproduction is determined
randomly, with a pre-defined probability referred to
as the crossover rate.

(d) Mutation:A population which reproduces purely asex-
ually rapidly becomes dominated by a single genome
and evolution grinds to a halt. Random mutations in
the genetic sequence can drive evolution beyond this
point, increasing diversity in a population.1 The prob-
ability that a particular digit in the genetic sequence is
mutated (straight after breeding) is determined by the
mutation rate.

The breeding and mutation are continued until a new
generation is formed, and the entire initial generation
is culled. Steps (a) through (d) are then repeated, with
subsequent generations exhibiting fitter solutions to the
problem. The evolution is terminated when an appropriate
fitness criterion is satisfied.

Charbonneau (1995) and Hakala (1995) presented
some of the earliest applications of genetic algorithms in
astronomy, with the former detailing a freeware algorithm
(pikaia).2 These early studies focussed upon the fitting
of light curves and galactic rotation curves (Charbon-
neau 1995), and constraining accretion stream mapping in
eclipsing polars (Hakala 1995), but since then the appli-
cation of genetic algorithms has been used in the design
of filters and filter systems (Offer & Bland-Hawthorn
1998; Bailer-Jones 2004), modelling the structure of the
Galaxy (Larsen & Humphreys 2003), the signature of

1 It should be noted that the neo-Darwinistic view that it is solely DNA
that evolves has been questioned, with the implication that evolution is
actually a complex interplay of the genotype and phenotype (see Cohen &
Stewart 2000).
2 www.hao.ucar.edu/public/research/si/pikaia/
pikaia.html
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gamma-ray bursts (Portegies Zwart & Totani 2001), solar
oscillations (Fletcher, Chaplin, & Elsworth 2003), and
even the scheduling of telescopes (Gómez de Castro &
Yáñez 2003).

2.2 Gravitational Lens Inversion

2.2.1 Encoding and Phenotyping

For the purposes of this project, each individual genome
was taken to be a string of 1024 characters. The expressed
genome (the phenotype) represented 32 × 32 pixels,
where each pixel could take a value between 0 and Fmax.
This pixel array represents the surface brightness dis-
tribution of the source. Such an encoding ensures the
surface brightness is subject to a positivity constraint (this
is not the case of some other inversion approaches such
as Warren & Dye 2003). In the forthcoming simulations,
Fmax = 255.

2.2.2 Gravitational Lens Model

The scaled lensing equations relating a position (x, y) in
the image plane to the corresponding point (xs, ys) in the
source plane (see Wambsganss 1998) can be written in
terms of a potentialφ(x, y) (related to the mass distribution
of the lens) such that

xs = x − ∂φ

∂x
|(x,y),

ys = y − ∂φ

∂y
|(x,y).

(2)

The gravitational lens potential was chosen to be
the three-parameter pseudo-isothermal elliptic potential
(Kochanek et al. 1989) of the form

φ(x, y) = b

√
r2
c + (1 − ε)x2 + (1 + ε)y2, (3)

where rc is the core radius of the potential, ε is the ellip-
ticity, and b is an overall normalisation factor (typically
linked to the velocity dispersion of the lensing galaxy).
While the determination of these parameters is the typi-
cal goal of many analyses of gravitational lenses, in this
initial examination of genetic algorithms it is assumed
that the model is fixed and its parameters are known.
In other words, the goal is to find the source profile,
given the observed image and the form of the lens. The
adopted values for the lens parameters were b = 0.5,
ε = 0.25, and rc = 0.1. The full optimisation problem of
the source profile and model parameters will be discussed
in Section 4.

2.2.3 Fitness Determination

To test the effectiveness of the genetic algorithmic
approach to gravitational lens inversion, an example solu-
tion was defined. This consisted of two offset Gaussian
profiles of differing heights and is displayed graphically
in the left-hand panel of Figure 1, while the image of this

Figure 1 The left-hand panel presents the artificial source utilised
in this study, while the right-hand panel presents the image of this
source as seen through the model gravitational lens (see Section
2.2.2). Note that these images are on different scales, with the source
panel being half the width of the image panel. The source is defined
on a grid of 32 × 32 pixels, whereas the resultant image is 64 × 64
pixels. For observed gravitational lens images, the image would be
∼3 arcsec on a side, corresponding to a pixel scale of 0.05 arcsec per
pixel. The corresponding source plane region possesses an image
scale of 0.025 arcsec per pixel and a side length of 0.8 arcsec.

source as seen through the lensing potential outlined pre-
viously appears in the right-hand panel. The image of the
source is realised upon a 64 × 64 grid.

In determining the fitness of a particular genome,
its expressed phenotype is used to represent a potential
source. This is mapped, via the lens model, to produce the
resulting image configuration. This is then compared to the
ideal image (Figure 1) and the assigned fitness was chosen
to be the reciprocal of the sum of the squared differences
between the reconstructed image and the observed image:

fitness = 1∑64
i=1

∑64
j=1(mij − pij)2

, (4)

where mij are the pixel brightnesses of the model gener-
ated from the genome and pij are the pixel brightnesses
of the ‘observed’ image. Clearly, in the absence of noise,
the sum of the squared differences for a perfect genome
is zero and hence the fitness is infinite. Of course, for
a real gravitational lens system, this ideal image will be
replaced with a noisy observed image. Simulations of the
genetic algorithm, considering the influence of noise, will
be discussed in Section 3.2.

3 Results

Examples of the source reconstructions achieved with
the genetic algorithm are presented in Figure 2. These
were produced by optimising the source profile, assum-
ing that the correct lens model was known. From top to
bottom, each pair of panels presents a snapshot of the evo-
lution, showing the fitness member of a generation. The
left-hand panel graphically presents the surface bright-
ness of the source (the genome), whereas the right-hand
panel presents the resultant image configuration (the phe-
notype). Clearly, as the population is evolved to older gen-
erations, the accuracy of the solution increases (compare
the source and image configuration at Generation 5000 to
Figure 1). Note that the ‘noisy’ pixels along the vertical
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Figure 2 An example of the evolutionary sequence obtained with
the genetic algorithm reconstruction of an idealised gravitational
lens system. The left-hand panel displays the source plane surface
brightness distribution at 10, 100, 500, 1000, and 5000 generations,
while the right-hand panel presents the resulting image plane distri-
bution. It is clear, when comparing to Figure 1, that the fitness of the
solution is increasing with each generation. Note that the vertical
noise at the edge of the source plane corresponds to regions which
are not mapped into the image plane and so do not contribute to the
overall fitness of the image reconstruction.

sides of the source reconstruction in Figure 2 correspond
to regions which are not mapped into the image region and
so do not contribute to the overall fitness of the solution.

3.1 Evolutionary Parameters

There are several parameters that can affect the perfor-
mance of a genetic algorithm. It is important to find a set
of parameters which is good at finding a solution quickly,
since it can be a computationally expensive task to run for
many generations. Also, it may be necessary to evolve the
population many times, in which case it is very important

to minimise the time required to find a satisfactory solu-
tion. There are several factors which have the potential to
influence this performance, and the four which are investi-
gated here are the mutation rate, the crossover rate, the size
of the population, and the selection pressure, which is the
relationship between the fitness score and the probability
of being selected for breeding.

It is known that there are interactions between these
parameters such that, for example, the answer to the
question ‘what mutation rate should I use?’ depends on
the values of the other parameters (Charboneau 1995). It
is also highly dependent on the nature of the problem at
hand. Therefore, the best that can be hoped for is some gen-
eral picture of what order of magnitude these parameters
should be.

To test the dependency of the genetic algorithms
approach on the adopted parameters, an initial recon-
struction was undertaken with the following parameters:
the crossover rate was set to 0.9, the population size was
50, the mutation rate was set to 10−3, and the selection
pressure was set to 10 (these were good values found
after much painstaking trial and error). In the following
sections, one of these parameters was varied, while the oth-
ers were kept fixed, allowing the influence of the varied
parameter to be determined.

3.1.1 Mutation

Figure 3 presents the evolution of the ‘best error’ (defined
as (fitness)−1) of the fittest member of a population as a
function of generation for several differing mutation rates.
Clearly, if the mutation rate is low (10−4), then the genome
evolves slowly, but shows steady improvement. Increasing
the rate of mutation increases the rate of improvement in
the genome. However, this cannot continue indefinitely:
as can be seen, a large mutation rate (10−2) results in a
rapid increase in improvement initially; after a short time
the evolution stagnates. This is because for a mutation rate
of 0.01 and a genome length of 1024, on average there are
about 10 mutations per generation on each individual, and
this is enough to outweigh any improvements that have
evolved through selection. Hence, a little mutation is a
good thing, but too much mutation is not. A general rule
of thumb is that a good mutation rate is one which will
give about one mutation over the whole genome.

3.1.2 Crossover Rate

Figure 4 presents the results of varying the crossover rate
on the rate of improvement of the genome. For the three
trial values of 0.1, 0.5, and 0.9, there is very little differ-
ence on the rate of improvement over time. Clearly, the
algorithm is generally insensitive to the adopted value of
the crossover rate.

3.1.3 Selection Pressure

Figure 5 presents the influence of the selection pressure,
β, on the rate of improvement of the fittest genome. Three
β values of 1, 5, and 10 were trialled; remember that β = 0
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Figure 3 The influence of the mutation rate on fitness as a function
of generation. The box in this panel (and in subsequent figures)
denotes the different values of parameter adopted. Note, this figure
presents (fitness)−1 as defined in Equation (4). A reasonable rate
of mutation is needed to stimulate progress in the population by
providing random variations for selection to act upon. However, if
the mutation rate is too high, any ‘good’ genomes will be severely
affected by too many mutations. The black curve is for the adopted
mutation rate of 10−3.
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Figure 4 As for Figure 3, but detailing the influence of crossover
rate on fitness as a function of generation.

ensures a uniform selection probability for breeding from
a population (i.e. no selection pressure at all), whereas
larger values preferentially selected the fittest members
for breeding. For the adopted values, there was a definite
advantage in using a β value bigger than 1, but only a
slight difference in performance between β = 5 and 10.

3.1.4 Population Size

The number of individuals in the population can also be
varied, and the influence of changing population size is
presented in Figure 6. Clearly larger populations have a
larger spread in genetic variation and it is seen that the
larger populations do evolve more rapidly. From a compu-
tational point of view, however, smaller populations result
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Figure 5 As for Figure 3, but detailing the influence of selection
pressure on the fitness as a function of generation.
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Figure 6 As for Figure 3, but detailing the influence of population
size on the fitness as a function of generation.

in a significant speed advantage, with less calculations
required per generation.

In fact, as the time taken for each generation is roughly
proportional to the population size, the larger genetic vari-
ability seen in the larger population can outweigh the time
required to calculate the fitness of a population.

3.2 Source Reconstruction and Noise

In real life, astronomical images are always contaminated
with some random noise, arising from sources such as
thermal fluctuations in electronics, the effects of the atmo-
sphere, and even photon counting noise if the source is
faint (a feature that is shared by a number of extended
gravitational lenses). Therefore it is worthwhile to test
how the genetic algorithm performs when the observed
image is contaminated with noise.

Including errors into the observed image also sets a
meaningful criterion to decide whether a particular recon-
struction is good enough. This criterion will be met if the
reconstructed image matches the observed image to within
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Figure 7 The results of the genetic algorithm reconstruction using
the noisy image after 5000 generations.
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Figure 8 Error of the fittest solution versus generation for the noisy
image. Notice that it does not tend to zero, as a perfect reconstruction
of this image is impossible.

the statistical error level set by the noise. For this test, a nor-
mally distributed random variable with σ = 5 was added
to each pixel in the observed image, creating the noisy
image shown in the lower left-hand panel of Figure 7.

When the genetic algorithm was run, the error versus
time plot (Figure 8) flattened out at a much higher value.
This was not surprising, because in this case it is not pos-
sible to have a source that reproduces the observed image
exactly, with its random fluctuations between neighbour-
ing pixels. The additional panels in Figure 7 present
the reconstructed image and source profile, as well as
the difference between these and the true source and
corresponding image; these are consistent with the input
noise characteristics.

This process can be thought of as a curve-fitting prob-
lem in two dimensions, with 642 data points (the observed
image), each with an error bar of five units. The aim is to
fit these data using a model that has 322 − N free param-
eters (each pixel of the source; note N ∼ 80 corresponds

to those pixels in the source grid which are not lensed into
the final image, and hence are not true free parameters; see
Figure 2). The χ2 statistic for this fit (with degrees of free-
dom equal to the number of constraints minus the number
of free paramaters in the model, i.e. 642 − 322 + 80) is
given by

χ2 =
64∑
i=1

64∑
j=1

(mij − pij)
2

σ2
= 1

σ2 × fitness
. (5)

Hence, a reconstruction is statistically good (within 1σ)
if the sum of the squared differences between the observed
image and the image of the reconstructed source is within
σ2 × (ν ± √

2ν), where ν is the number of degrees of free-
dom (Press et al. 1992). Hence, a good fit corresponds to
a value in the range 78 800 ± 1985. The genetic algorithm
was able to reduce the error to ∼82 000, and so recovered
an acceptable fit to the noisy image.

4 Full Optimisation

4.1 Lens Parameters in the Genome

In general, the goal of gravitational lens reconstruction
is to determine both the surface brightness of the source
and the parameters describing the mass distribution in
the deflecting galaxy. How can the genetic algorithmic
approach be generalised to tackle this problem? One idea
that was tried was incorporating the lens parameters as
part of the potential solutions to the problem, by encoding
them in the genomes. Then, the evolution would hope-
fully select individuals whose lens parameters were close
to the right values, and then proceed to optimise the source
pixels. The result of this approach was not very success-
ful. What actually occurred was that early on, a particular
value of parameters was locked on and became dominant
in the population. Then, the sources were optimised for
those (incorrect) values, and there was little hope in ever
getting to the right values. This was because any change
to the parameter values would require a huge chance jump
in the sources in order to gain a higher fitness than what
had already evolved.

4.2 Direct Search Method

While incorporating the lens parameters in the genome
was found not to be successful, an approach using a
started direct search, independent of the genetic algo-
rithm, was found to be successful. For the purposes of this
study, simple one-dimensional searches were employed,
although the technique can be easily generalised into
higher-dimensional searches.

An example of such a one-dimensional search is pre-
sented in Figure 9, in which rc and ε were held at their
optimum value, and a suite of reconstructions were under-
taken with differing values of b. This figure presents the
residual of the fittest solution of the population after 3500
generations. This clearly reveals that a good reconstruc-
tion is only possible if b is very close to the correct value
of 0.5.
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Figure 9 The best error after 3500 generations as a function of
the value of b. Clearly, a good reconstruction of the image is only
possible if the value of b is close to the true value of 0.5.
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Figure 10 Best error after 200 generations as a function of the
value of b. Note that the evolution is proceeding at a faster rate, even
at this early stage, if the lens parameters are correct.

The major disadvantage of this approach is its com-
putational inefficiency. Each point in Figure 9 required
the genetic algorithm to be run over 3500 generations,
which takes about 10 minutes on a modern desktop com-
puter. However, it was noticed that even after a small
number of generations, the correct value of b was ‘win-
ning the race’, and so a smaller number of generations can
be run to determine the interesting regions of parameter
space for further exploration. To illustrate this, Figure 10
presents the same result as Figure 9, using only 200 gen-
erations rather than 3500. This obviously has a significant
computational advantage.

Calculating each point in Figures 9 and 10 required one
run of the genetic algorithm, and the population was reset
each time such that the initial genomes were sequences of
zeros (corresponding to black pixels). However, if each
point in these figures were calculated sequentially, the
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Figure 11 Best error after 200 generations as a function of the
estimated values of the parameters (with the other two fixed at the
correct values). The minima of the plots are all at the true values of
the parameters. These figures were calculated without resetting the
population after each 200 generations.

populations need not be reset as the solution to the previ-
ous point already contains a fairly good solution, but for
a slightly different b-value. Then the genetic algorithm is
given a head start in trying to improve the solution, effec-
tively tweaking the previous solution to produce a new
solution. This results in a dramatic smoothing out of the
figures (Figure 11), and allows the parameter to be cal-
culated correctly to an accuracy of about three significant
figures in only 200 generations.

As noted earlier, it should be possible to simply gen-
eralise this one-dimensional method to include more than
one free parameter, either by using a large grid search
(which may take a long time, although it is straightfor-
ward to devise a parallel computing scheme to do this,
since each run can be done independently of the others),
or by using a multidimensional minimisation method such
as Powell’s method.

5 Conclusions

This paper has introduced a new technique for the inver-
sion of gravitationally lensed images of extended sources.



When Darwin Met Einstein: Gravitational Lens Inversion with Genetic Algorithms 135

This utilises genetic algorithms to evolve an optimal
source for a particular gravitational lens model. It is
seen that this approach successfully recovers the source
configuration of an idealised gravitational lens system.
Furthermore, it is demonstrated that this genetic algorith-
mic approach successfully recovers the source profile in
the presence of noise and can be incorporated into more
general gravitational lens optimisation schemes. This ini-
tial investigation has considered only a simple model of
gravitational lensing, neglecting detailed aspects of true
gravitational lens systems, such as various sources of noise
and image smearing due to instrumental and atmospheric
effects. However, due to the forward mapping of this
approach, these can be added in a straightforward fash-
ion, providing an inversion technique that can be applied
to observed gravitational lens systems. Due to the lim-
ited time frame of this initial project, these aspects of the
algorithm will be left as further work.

The most time-consuming part of the genetic algo-
rithmic approach is the calculation of the fitness of each
member in a generation, scaling with the size of the pop-
ulation. For a particular genome, however, the calculation
of the fitness is independent of the other members of the
generation. This leads to a simple parallelization of the
approach, with the fitness calculation farmed out to indi-
vidual processors. Furthermore, genetic evolution can be
driven harder via the inclusion of parasitic organisms or
‘black sheep’ (Bobinger 2000), speeding up the evolution
of the genome to fitter solutions and preventing evolution-
ary stagnation; these too will be incorporated into a fuller
version of this inversion technique.
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