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Abstract: Accurate automatic identification of astronomical objects in an imperfect world of non-linear wide-
angle optics, imperfect optics, inaccurately pointed telescopes, and defect-ridden cameras is not always a trivial
first step. In the past few years, this problem has been exacerbated by the rise of digital imaging, providing
vast digital streams of astronomical images and data. In the modern age of increasing bandwidth, human
identifications are many times impracticably slow. In order to perform an automatic computer-based analysis of
astronomical frames, a quick and accurate identification of astronomical objects is required. Such identification
must follow a rigorous transformation from topocentric celestial coordinates into image coordinates on a CCD
frame. This paper presents a fuzzy logic based algorithm that estimates needed coordinate transformations in
a practical setting. Using a training set of reference stars, the algorithm statically builds a fuzzy logic model.
At runtime, the algorithm uses this model to associate stellar objects visible in the frames to known cataloged
objects, and generates files that contain photometry information of objects visible in the frame. Use of this
algorithm facilitates real-time monitoring of stars and bright transients, allowing identifications and alerts to
be issued more reliably. The algorithm is being implemented by the Night Sky Live all-sky monitoring global
network and has shown itself significantly more reliable than the previously used non-fuzzy logic algorithm.

Keywords: methods: data analysis — methods: statistical — techniques: image processing

1 Introduction

Useful pipeline processing of astronomical images
depends on accurate algorithmic decision making. For
previously identified objects, one of the first steps in
computer-based analysis of astronomical pictures is an
association of each object with a known catalog entry.
This necessary step enables such science as automati-
cally detected transients and automated photometry of
stars. Since computing the topocentric coordinates of a
given known star at a given time is a simple and common
task, transforming the celestial topocentric coordinates to
image (x, y) coordinates might provide the expected loca-
tion of any star in the frame. However, in many cases slight
shifts in the orientation, inaccuracy of the optics, or imper-
fections in the CCD can make this seemingly simple task
formidable.

Fuzzy logic (Zadeh 1965, 1978, 1983, 1994) is an
extension of Boolean logic that is useful for making com-
plex decisions by computers. While in Boolean logic an
item has only two levels of membership to a set (false or
true; 0 or 1), fuzzy logic supports any value within the
interval [0,1] as a level of membership of an item to a
fuzzy set. A fuzzy logic model consists of three different
types of entities: fuzzy sets, fuzzy variables, and fuzzy
rules. The membership of a fuzzy variable in a fuzzy set
is determined by a function that produces values within

the interval [0,1]. These functions are called membership
functions. Fuzzy variables are divided into two groups:
antecedent variables that contain the input data of the
fuzzy logic model, and consequent variables that contain
the results calculated by the fuzzy logic model.

In this paper, we present a fuzzy logic based algo-
rithm that transforms celestial coordinates into image
coordinates for even complex combinations of wide-angle
non-linear optical distortions, slight optical imperfec-
tions, and small unrecorded orientational perturbations.
In Section 2 we describe the fuzzy logic algorithm, and
in Section 3 we present and discuss a practical imple-
mentation of the algorithm for automatic analysis of an
operational astronomical project called Night Sky Live
(NSL; Nemiroff et al., in preparation).

2 Fuzzy Logic Based Coordinate Transformations

The transformation of celestial topocentric spherical sky
coordinates to local Cartesian image coordinates can be
defined by a set of two functions. Mathematical conver-
sion from right ascension, declination, latitude, longitude,
and local time to altitude and azimuth is straightforward.
Further transformation of azimuth and altitude sky coor-
dinates to (x, y) image (CCD) coordinates is frequently
harder in practice when faced with practical inaccuracies
of knowledge. For practical application of fuzzy logic, this
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latter transformation is broken up into two parts:

(altitude, azimuth) �−→ x (1)

(altitude, azimuth) �−→ y (2)

On a CCD image, pixel locations can be specified in either
Cartesian or polar coordinates. Let xzen be the x coordi-
nate (in pixels) of the zenith in the image, and yzen be
the y coordinate of the zenith. The x and y coordinates
of any given star visible in an astronomical image can be
computed as follows:

x = xzen + sin(angle) · distance (3)

y = yzen + cos(angle) · distance (4)

where angle is a polar azimuthal angle and distance is a
polar radial distance.

In order to use these equations it is necessary to com-
pute a polar distance and angle for given objects. Given
the observer’s latitude and longitude, this can be done by
converting the celestial coordinates (azimuth and altitude)
of a given stellar object at a given time to the correspond-
ing angle and distance in the image. Since the azimuth
and altitude of any given bright star or planet at any given
time can be easily computed, the only missing link here
is the transformation of the altitude and azimuth to image
coordinates, so the object can be found in the image.

2.1 Reference Stars

Each of the two models is based on manually identified
reference stars. A reference star can be any star within an
image that was correctly associated with the correspond-
ing stellar object. Being familiar with the night sky, we can
inspect the frame by eye and identify the stellar objects that
appear in it. The image (x, y) coordinates of the object can
be taken from the peak of its point spread function (PSF).
Each reference star provides a record with the following
fields: azimuth, altitude, angle, and distance.

Each identified star contributes an azimuth and alti-
tude (by basic astronomy) and also an angle and distance
(by measurement from the image). These provide the raw
data for constructing a mapping between the two, using
the fuzzy logic model that will be described later in the
paper. In order to obtain an accurate fuzzy logic model
that calculates the angle, it is necessary to select reference
stars that uniformly cover the entire image. This assures
that the calculation of one value will depend on reference
points that are relatively close to it. This is also true for
the model that calculates the distance.

2.2 Building the Fuzzy Logic Model

In order to transform celestial coordinates into image coor-
dinates, two different fuzzy logic models are being built
based upon the two transformations:

f1: azimuth �−→ angle (5)

f2: altitude, azimuth �−→ distance (6)

Here, altitude, azimuth, and angle are angular measures,
while distance is measured in pixels. Each transforma-
tion (f1 and f2) is computed by a different fuzzy logic
model, thus one model calculates the angle and the other
calculates the distance. The fuzzy logic model f1, which
calculates the angle, is an approximation based on the
assumption that the optical axis is perfectly aligned, so
the angle is not dependent on the altitude.

The fuzzy logic model f1 has one antecedent (input)
fuzzy variable and one consequent (output) fuzzy vari-
able, while the fuzzy logic model f2 has two antecedent
variables (altitude, azimuth) and one consequent fuzzy
variable.

2.3 Converting Azimuth to Polar Angle on the CCD (f1)

The first model (f1) is built according to the reference stars
such that each reference star adds to the model one fuzzy
set and one fuzzy rule. Each fuzzy set is associated with
a membership function that is built in the form of a tri-
angle (Zadeh 1965). Each of these membership functions
reaches its maximum at the reference value, and intersects
with the x-axis at the reference values of its neighboring
reference stars. For instance, suppose we would like to
build the fuzzy logic model with a data set that contains
the following four reference stars:

azimuth altitude angle distance

0 ε0 θ0 R0

α1 ε1 θ1 R1

α2 ε2 θ2 R2

α3 ε3 θ3 R3

The first reference star maps azimuth 0◦. Assuming
α1 < α2 < α3, the membership functions that will be added
to the model are described in Figure 1.

The membership of the fuzzy sets is determined by the
following membership functions:

F0(x) =
{

1 − 1
α1

· x 0 ≤ x ≤ α1

0 x < 0 or x > α1

F1(x) =



1
α1

· x 0 ≤ x < α1

1 − 1
α2 − α1

· (x − α1) α1 ≤ x ≤ α2

0 x < 0 or x > α2

F2(x) =



1
α2 − α1

· (x − α1) α1 ≤ x < α2

1 − 1
α3 − α2

· (x − α2) α2 ≤ x ≤ α3

0 x < α1 or x > α3

F3(x) =



1
α3 − α2

· (x − α2) α2 ≤ x < α3

1 − 1
360 − α2

· (x − α3) α3 ≤ x ≤ 360
0 x < α2 or x > 360

F4(x) =
{ 1

360 − α3
· (x − α3) α3 ≤ x ≤ 360

0 x < α3 or x > 360

F0 to F4 are the membership functions of the fuzzy sets
FS0 to FS4 that were created according to the reference
stars (the function Fm is the membership function of the
fuzzy set FSm). The membership functions are built such
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Figure 1 The membership functions of the fuzzy sets (FS0 to FS4)
created by the four reference values (0, θ0), (α1, θ1), (α2, θ2), (α3, θ3)
for f1(azimuth �−→ angle).

that almost all azimuth values belong (with non-zero mem-
bership) to two fuzzy sets. Only the points of maximum
(0, α1, α2, α3, 360) have a non-zero membership to just
one set.

The defuzzification method used in this model is the
weighted average, which is an efficient defuzzification
method when the fuzzy logic model is built according to
a set of singleton values (Takagi & Sugeno 1983, 1985).
Since weighted average is used, the consequent part of
each rule is a crisp value and not a fuzzy set. Therefore,
the fuzzy rules that will be added to the model are:

FS0 �−→ θ0

FS1 �−→ θ1

FS2 �−→ θ2

FS3 �−→ θ3

FS4 �−→ 360

For instance, suppose that the first three reference stars
have azimuths of 0◦, 10◦, and 20◦, and their polar angles
are 3◦, 12◦, and 22◦ respectively, such that α0 = 0◦,
θ0 = 3◦, α1 = 10◦, θ1 = 12◦, α2 = 20◦, and θ2 = 22◦. Each
reference star adds one fuzzy set to the model such that
the membership functions of the first two fuzzy sets FS0,
FS1 are:

F0(x) =
{

1 − 1
10 · x 0 ≤ x ≤ 10

0 x < 0 or x > 10

F1(x) =



1
10 · x 0 ≤ x < 10
1 − 1

10 · (x − 10) 10 ≤ x ≤ 20
0 x < 0 or x > 20

Each reference star also adds one fuzzy rule such that the
first three fuzzy rules are:

FS0 �−→ 3
FS1 �−→ 12
FS2 �−→ 22

Now suppose that we want to use this model in order to
compute the polar angle (in the image) of a stellar object
with an azimuth of 6◦. The value 6 has a level of mem-
bership of 1 − (1/10) · 6 = 0.4 to the fuzzy set FS0 and
(1/10) · 6 = 0.6 to the fuzzy set FS1. Since the level of
membership of 6 to all other fuzzy sets is 0, the only rules
that will have any effect on the output of the computa-
tion are rules 0 and 1 above. Since the weighted average
defuzzification method is performed, the output of the
computation is (0.4 · 3 + 0.6 · 12)/(0.4 + 0.6) = 8.4. This
computation practically provides the same results as a sim-
ple linear interpolation of the value 6 with the two closest
neighboring reference stars.

2.4 Converting Altitude and Azimuth to Radial Distance
on the CCD (f2)

Unlike the simpler f1 model used for transforming the
azimuth to angle, the computation of the distance (in pix-
els) from (xzen, yzen) should be computed based on two
parameters, which are the altitude and the azimuth. Using
both the altitude and azimuth allows the model to deal
with asymmetric behavior of the optics as well as inac-
curate orientational information. In other words, using
the assumption that the optics orientation is directly at
the zenith and the distortion of the optics and hardware
is completely symmetric, a reference point at a certain
azimuth would allow calculating the distance of a point at
the same altitude but at a different azimuth. However, this
is not always the case. For instance, a stellar object with
the azimuth of 0◦ (north) and altitude of 30◦ can be at a dis-
tance of 150 pixels from (xzen, yzen), while another stellar
object at the same altitude (30◦) but at azimuth of 60◦ will
be at a distance of 155 pixels from (xzen, yzen). Moreover,
(xzen, yzen) does not necessarily appear in the center of the
frame, and the frame is not necessarily centralized. There-
fore, when computing the distance of a stellar object from
(xzen, yzen), it is required to take not only the altitude of
the stellar object into consideration, but also the azimuth.
In order to do that, the fuzzy logic model that calculates
the distance is built according to reference stars that not
only have different altitudes, but also different azimuths.

We build the f2 model that computes the distance using
four different sets of reference stars such that each set con-
tains reference stars that share approximately the same
azimuth. For the sake of simplicity, the first set contains
reference stars that are near azimuth 0◦, the second set con-
tains reference stars near azimuth 90◦, and the other two
sets contain stars near azimuth of 180◦ and 270◦ respec-
tively, i.e. all reference stars used for this model should
be fairly close to the azimuth of 0◦, 90◦, 180◦, or 270◦.
In order to use the four sets of reference stars, four new
fuzzy sets are added to the model. Those fuzzy sets are
North, East, South, and West.

Fuzzy logic can be viewed as a complex interpolation
method. In two dimensions, our fuzzy logic realization
allows f2 to perform the combined interpolation of linear
and Gaussian functions in a straightforward fashion, and to
alter the model easily when needed. Note that this is quite
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Figure 2 The fuzzy sets of the four directions (North, South, East,
West).

different than four separate linear and/or Gaussian inter-
polations for the four directions. The membership func-
tions of the fuzzy sets are described in Figure 2.

The membership in the fuzzy sets is determined by the
following Gaussian functions:

North:

Fn(x) =
{

e−x2/2σ2
0 ≤ x ≤ 180

e−(x − 360)2/2σ2
180 < x ≤ 360

East:

Fe(x) =
{

e−(x − 90)2/2σ2
0 ≤ x ≤ 270

e−(x − 450)2/2σ2
270 < x ≤ 360

South:

Fs(x) = e−(x − 180)2/2σ2

West:

Fw(x) =
{

e−(x − 270)2/2σ2
90 < x ≤ 360

e−(x + 90)2/2σ2
0 ≤ x ≤ 90

where σ is set to 45.
In this case, the level of membership for each of the

four membership functions is always greater than zero, as
opposed to the f1 angle model where only two member-
ship functions have a positive level of membership.

Building thef2 model can be demonstrated by an exam-
ple: suppose the model is built based on the following six
reference stars listed in Table 1.

As with f1, each reference star adds to the model
one fuzzy set that has a triangle membership function.
For instance, the membership function of the fuzzy set
added by S1 reaches its maximum of unity at 68◦, and
intersects with the x-axis at the points of maximum of its
neighboring reference stars. The neighboring stars are the
two stars such that their altitudes are closest to the altitude
of S1 (such that one is greater than 68◦ and one is smaller
than 68◦), and have approximately the same azimuth as
S1. In this example, one neighboring star would be S2 and
the other would be S3. All three stars share approximately
the same azimuth (which is north). Therefore, the fuzzy

Table 1. Reference stars

Star Azimuth Altitude Angle Distance (pixels)

S1 0◦ 68◦ 2.4◦ 215
S2 359◦ 62◦ 1.2◦ 224
S3 1.5◦ 72◦ 3.4◦ 206
S4 90◦ 66◦ 94.2◦ 180
S5 91◦ 62◦ 95.6◦ 188
S6 91.6◦ 70◦ 95.9◦ 172

Figure 3 The membership function of the fuzzy set Alt68N. The
figure also include parts of the membership functions of Alt62N and
Alt72N that were added by the two neighboring reference stars S2
and S3.

set Alt68N that will be added by S1 will have a triangle
membership function that reaches its maximum at 68◦, and
intersects with the x-axis at 62◦ and 72◦. This membership
function is described in Figure 3.

The membership function added by S1 is:

FAlt68N(x) =



x − 62
68 − 62 62 < x ≤ 68
1 − x − 68

72 − 68 68 < x ≤ 72
0 x < 62 or x > 72

Since the azimuth of S1 is approximately north, the
fuzzy rule added to the model by S1 is:

Alt68N ∧ North �−→ 215.

This rule is more significant for stars that appear in the
northern part of the sky (and in this case, also at an altitude
of around 68◦). The practical effect of this rule will be
stronger as the coordinates are closer to the 68◦ parallel.
The fuzzy rules that will be added by the other reference
stars are:

Alt62N ∧ North �−→ 224
Alt72N ∧ North �−→ 206
Alt62E ∧ North �−→ 188
Alt66E ∧ North �−→ 180
Alt70E ∧ North �−→ 172

Now suppose that we want to use this model
in order to compute the distance (in pixels) of a
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stellar object with an azimuth of 30◦ and altitude
of 64◦. The value 64 has a membership value of
(64 − 62)/(68 − 62) = 1/3 to the fuzzy set Alt68N
(which was added to the model by S1), and a
membership value of 1 − (64 − 62)/(68 − 62) = 2/3
to the fuzzy set Alt62N (which was added to the
model by S2). Also, this value would have a mem-
bership value of (64 − 62)/(66 − 62) = 0.5 to the
fuzzy set added by S4, and a membership value of
1 − (64 − 62)/(66 − 62) = 0.5 to the fuzzy set added by
S5. The membership value of the azimuth 30◦ to the fuzzy
set North is e−302/2·452 � 0.8, and to the fuzzy set East it
is e−(30−90)2/2·452 � 0.412. The membership values to the
fuzzy sets South and West are very close to zero in this
case, and therefore have very little effect on the output
value. For the sake of the simplicity of the example, these
membership values are assumed to be exactly zero.

The computation process is based on product inferenc-
ing and weighted average defuzzification. Therefore, the
output value of the computation would be:

215 · 0.8 · 0.333 + 224 · 0.8 · 0.667
+ 180 · 0.412 · 0.5 + 188 · 0.412 · 0.5

0.8 · 0.333 + 0.8 · 0.667
+ 0.412 · 0.5 + 0.412 · 0.5

� 208.47.

3 Example Application to NSL Data: Accuracy
and Complexity

The fuzzy logic based transformation formula has been
tested and is in practical use with the NSL project
(Nemiroff et al., in preparation). Purposes of the global
NSL network of fish-eye CONtinuous CAMeras (CON-
CAMs) include the ability to monitor and archive the
entire bright night sky, track stellar variability, and search
for transients. Fully 2π steradians — half the sky — are
monitored passively by each CONCAM, without track-
ing. Currently, the NSL project deploys nine CONCAMs
at many of the world’s premier observatories. When the
Moon is down, CONCAMs take 180-s exposures every
236 s, and can detect stars down to visual magnitude 6.8
near the image center.

The fuzzy logic based transformation formula is used
by NSL for converting the celestial coordinates to image
coordinates, so known cataloged stellar objects can be
associated with PSFs that appear in the NSL frames. One
simple task that is enabled by this transformation for-
mula is the annotation of the all-sky images with the
names of bright stars, constellations and planets. This
task is mostly used for educational or ‘cosmetic’ pur-
poses. A more important task is the automatic detection of
non-cataloged objects. This task is required for automatic
detection of meteors, comets, novae, and supernovae, as
well as other astronomical phenomena visible in the night
sky. The following algorithm uses the transformation for-
mula in order to associate PSFs in the image to stellar
objects.

1. function check_stars(image, date_time)
2. image_PSFs ← GetPSFs(image)
3. for each image_PSF_cords in image_PSFs do
4. begin
5. min_distance ← ∞
6. for each star in catalog do
7. star_celestial_cords ← CelestialCoordinates

(star, date_time)
8. if InView(star_celestial_cords) then
9. image_cords ← F (star_celestial_cords)

10. if distance(image_cords, image_PSF_cords)
< min_distance then

11. min_distance ← distance(image_cords,
image_PSF_cords)

12. end if
13. end for
14. if min_distance < TOLERANCE then
15. associate(image_PSF_cords, star)
16. end for

The function F transforms celestial coordinates to
image coordinates based on the fuzzy logic models
described in this paper. The function GetPSFs returns a list
of coordinates of the PSF peaks that appear in the picture.
This function can be implemented by using some avail-
able algorithms for detection of sources from astronomical
images such as SExtractor (Bertin & Arnouts 1996).
The function InView returns true if its argument coordi-
nates are inside the relevant view of the optical device. In
the inner loop the algorithm searches the catalog for a star
that should appear closest to the center of the PSF. Since
the hardware used for the NSL project currently cannot
get deeper than magnitude 6.8, the catalog being used is a
subset of the Hipparcos catalog (ESA 1997) that is sure to
include objects this bright. In line 14, the minimum dis-
tance found in the inner loop is compared with a constant
value TOLERANCE that is a tolerance value. Only if the
distance is smaller than TOLERANCE then image_cords
and image_PSF_cords are considered as referring to the
same star.

In Figure 4, taken by the Mauna Kea CONCAM, the
names of bright stars and constellations were annotated
automatically using the above transformation. The coordi-
nates of one bright point (appearing at the lower right of the
frame) could not be associated with any cataloged object
so it was automatically marked with a yellow square. This
object is believed to be a meteor.

The present fuzzy logic algorithms allow practically
100% chance of accurate identification for NSL stars
down to a magnitude of 5.6. We are currently unaware
of any exceptions. A previously used NSL identifica-
tion algorithm that employed a straightforward analytic
transformation was only accurate to about magnitude 3.5,
although that was somewhat dependent on the NSL sta-
tion. This dramatic improvement was the driving impetus
for the creation of this paper.

A useful by-product of the newly accurate identifica-
tions is the automatic generation of photometry files. The
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Figure 4 An NSL picture with labeled stars, constellations, a planet, and a meteor (boxed) processed using the fuzzy logic based transformation
formula.

ability to associate each PSF with a cataloged star allows
the system to provide continuous monitoring of many
bright stars. This information is provided in the form of
text (XML tagged) files. Each frame produces one text
file that lists all PSFs that were detected in the frame and
the name and catalog number of the stellar object associ-
ated with it. It also lists some additional data about each
detected object such as the previously cataloged visual
magnitude, spectral type, and celestial coordinates. Iden-
tification allows other algorithms to process the frame and
match each star with real-time photometric data such as
estimated counts of the background and the counts of
the PSF. For each bright star, the average of the bright-
est 1, 5, 9, 16, and 25 pixels is listed. For dimmer stars,

however, the realized PSF is much smaller so only the
average of the top five pixels is listed. The on-line database
allows browsing the records for past events. Since the pho-
tometry data are beyond the scope of this paper, more
information can be found elsewhere (Nemiroff et al., in
preparation).

The inverse computation of the presented transforma-
tion formulae (converting angle and distance to altitude
and azimuth) can be built in the same method described
in this paper, with the exception of using the angle and
distance for defining the membership functions, while the
azimuth and altitude are used as the crisp output values
of the fuzzy rules. This transformation formula is cur-
rently being used by NSL for computing 3D trajectories
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Table 2. Accuracy level of the transformation as a
factor of the number of reference stars

Stars Stars Average error Maximum error
in f2 in f1 (pixels) (pixels)

50 40 3.2 4.8
42 40 3.2 4.8
42 30 3.5 5.5
36 30 3.6 5.7
32 20 4.4 6.2
30 20 5.2 8.0
20 20 6.5 10.2

of meteors detected by the twin CONCAMs located at
Mauna Kea and Haleakala.

3.1 Computation Accuracy

In order to check accuracy, the combined f1 and f2 mod-
els were used to compute the image coordinates of some
150 stars recorded by the NSL project (Nemiroff et al., in
preparation). The NSL project uses fish-eye images with
an extreme viewable angle of 180◦. For each pair of image
(x, y) coordinates, we calculated the Euclidean distance
from the location calculated by the model and the loca-
tion where the star appeared in the image. We took into
consideration the average of the 150 Euclidean distances
(the average error) and the worst case error, which is the
longest distance among all computed 150 Euclidean dis-
tances. Table 2 shows the accuracy levels according to the
number of reference stars that were used in order to build
both fuzzy logic models (the altitude f2 model and the
azimuth f1 model).

3.2 Computation Complexity

The complexity of the computation is a function of the
number of fuzzy rules and fuzzy sets in the model, which,
in turn, is dependent upon the number of reference stars.
The accuracy needed to identify stars unambiguously is
dependent upon the density of stars per pixel in the frame.
Clearly, the higher the average star density, the greater the
accuracy needed to avoid confusion.

Experiments suggest that accuracy within five pixels
will allow automatic analysis of NSL frames. As shown
in Table 2, this can be achieved using a fuzzy logic model

that is built with a constant number of ∼80 well spread out
reference stars. Therefore, the final fuzzy logic model con-
tains a constant number of ∼80 rules and ∼160 fuzzy sets,
so the theoretical complexity of the computation is O(1).
Practically, the CPU time that is required for the computa-
tion is negligible, and ∼1000 coordinates are transformed
in less than one second by a system equipped with an Intel
Pentium III processor at 850 MHz and 128 MB of RAM.

4 Conclusions

Inaccuracies of optics and hardware lead to non-trivial
transformation formulae that are sometimes required for
the automatic analysis of the digital frames. A fuzzy
logic based method does not achieve an exact solution
to the problem, but rather provides simple and maintain-
able transformation formulae with an accuracy that makes
them more useful in practice than previously attempted
straightforward analytic transformations (based on the
linear transformation R = kε, where R is the radial dis-
tance from xzen, yzen; ε is the altitude; and k is a constant).
When applied to the NSL project, the method presented
is accurate enough to perform automatic processing of
all-sky images in order to associate PSFs in the frames
with their corresponding stellar objects nearly 100% of the
time down to magnitude 5.6, and automatically detect non-
cataloged bright objects. This technique demonstrates that
it is possible to use fuzzy logic based algorithms to reduce
the effect of minor defects and inaccuracies of the optical
hardware and/or slightly inaccurate telescope orientation
information. For NSL frames, only 80 reference stars are
required to build the fuzzy logic model so that automatic
identifications do not form a computational bottleneck.
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