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Abstract: It has long been known that once you cross the event horizon of a black hole, your destiny lies at
the central singularity, irrespective of what you do. Furthermore, your demise will occur in a finite amount
of proper time. In this paper, the use of rockets in extending the amount of time before the collision with the
central singularity is examined. In general, the use of such rockets can increase your remaining time, but only
up to a maximum value; this is at odds with the ‘more you struggle, the less time you have’ statement that
is sometimes discussed in relation to black holes. The derived equations are simple to solve numerically and
the framework can be employed as a teaching tool for general relativity.
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1 Introduction

General relativity is one of the pillars of modern physics,
providing an accurate mathematical picture of gravita-
tion and cosmology (see Misner et al. 1973, for a superb
description). While extremely successful, the theory pre-
dicts the existence of black holes, completely collapsed
massive objects which possess a one-way membrane (the
event horizon) through which objects can pass through
from the Universe, but not return. The strange proper-
ties of these objects has sparked the public imagination
(Thorne 1994; Novikov 1995) and are the staple of most
undergraduate courses on general relativity.

In this article, the question of the journey within the
event horizon is examined, especially with regards to
attempts to prolong, through the use of powerful rock-
ets, the time to the inevitable collision with the central
singularity at r = 0. While touched upon in many texts,
the discussion of their use in the vicinity of black holes is
not common. Hence this article is a pedagogical study of
the use of coordinates and physical acceleration in gen-
eral relativity. Furthermore, it aims to clear up a few black
hole myths, especially those that appear on authoritative
internet websites1. In Section 2 a little history is presented,
while Section 3 outlines the approach taken. The results
of this study appear in Section 4 and the conclusions in
Section 5.

2 A Little History

It has been ninety years since Schwarzschild presented
the first exact solution to the field equations of general

1 While the authors acknowledges that the Internet is not the ultimate
font of knowledge, anyone who has marked a few undergraduate essays
will know that many students see it as their only source of knowledge.

relativity (Schwarzschild 1916). Representing the space-
time curvature outside of a spherical mass distribution,
the existence of singularities in the solution led to sev-
eral confusing problems. Importantly, the coordinate time
is seen to diverge as an object falling in this spacetime
approaches the Schwarzschild radius (r = 2m, in units
where G = c = 1 and where m is the mass of the black
hole), with the conclusion that the entire history of the
Universe can pass before anything actually falls to this
radius. Paradoxically, the proper time as experienced by
the falling object is finite through r = 2m and the faller
reaches r = 0 in finite time.

A reformulation of the Schwarzschild solution in free-
falling coordinates revealed the Schwarzschild radius to be
an event horizon, a boundary which can only be crossed
from r > 2m, but not from r < 2m, leading to notion of
complete gravitational collapse and the formation of black
holes (Painlevé 1921). However, even with these advances,
the singular state of the Schwarzschild solution at r = 2m

led even the most famous relativist to suggest that black
holes cannot form (Einstein 1939). The resolution was
ultimately provided by Finkelstein (1958) who derived
a coordinate transformation of the Schwarzschild solu-
tion which made it finite at r = 2m; this was, however,
a rediscovery of the earlier work by Eddington (1924)
who apparently did not realize its significance2. With this
transformation the true nature of the Schwarzschild radius
was revealed, acting as a one-way membrane between the
Universe and inner region of the black hole. Surprisingly,

2 It is more astounding that in his analysis, Eddington (1924) explicitly
considered outgoing light rays which, in his transformed coordinates,
clearly crossed the event horizon from the inside to the outside. While
he did not note it, Eddington had uncovered the white hole Schwarzschild
solution.
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the analysis of Finkelstein (1958) also possesses a time
reversed black hole solution, a white hole in which the
one-way membrane is reversed.

As discussed in many texts, the transformation to
Eddington–Finkelstein coordinates clearly reveals the
ultimate fate of an infalling observer. Now crossing the
event horizon in a finite coordinate time, the future light
cones for all massive explorers are tilted over such that
there is no way back and the future ultimately lies at the
central singularity. But after crossing the horizon, how
long does the intrepid explorer have until this happens,
and what can they do to maximize their survival time?
For a free-falling path, the calculation of the proper time
experienced by the explorer is a question found in gradu-
ate texts (e.g. see problem 12–14 in Hartle 2003) and it is
straightforward to show that the maximum time that can
be experienced below the event horizon is

τ = πm (1)

For a stellar mass black hole, this will be a fraction of a
second, but for a supermassive black hole, this may be
hours. As will be shown later, this maximum time applies
to a faller who drops from rest at the event horizon and
any one who starts falling from above the event horizon
and free falls into the hole will experience less proper time
on the journey from the event horizon to the singularity.

3 Setting Up the Problem

In this paper, only purely radial motion will be consid-
ered and the faller will be assumed to be impervious to
the significant inertial and tidal forces it will suffer on its
journey.

3.1 Eddington–Finkelstein Metric

In considering a radial journey across the event hori-
zon, the advanced Eddington–Finkelstein coordinates will
be employed. With this, the Schwarzschild solution is
represented by the invariant interval of the form3

ds2 = −
(

1 − 2m

r

)
dt2 + 4m

r
dtdr +

(
1 + 2m

r

)
dr2

+ r2d�2 (2)

As noted previously, in this form the interval is non-
singular at the event horizon (r = 2m).

3.2 4-Velocity and 4-Acceleration

The majority of texts on general relativity consider free
fall motion through spacetime, with no acceleration terms
due to non-gravitational forces. Such free fall paths are

3 There is more than one representation of the Eddington–Finkelstein
metric for the Schwarzschild solution, and often it is written in terms
of an advanced time parameter. However, as this parameter is null, the
metric is often recast in terms of a new time-like parameter, resulting
in the metric given above (see Chapter 11.5 in Hobson, Efstathiou, &
Lasenby 2005). This is explicitly the form of the metric investigated by
Eddington (1924) and Finkelstein (1958).

governed by the well-known geodesic equation which
parameterizes the coordinates, xα of a massive object in
terms of its proper time, τ,

xα = (t(τ), r(τ), θ(τ), φ(τ)) (3)

From this, it is simple to define a 4-velocity, uα, of the
form

uα = dxα

dτ
=

(
dt

dτ
,

dr

dτ
,

dθ

dτ
,

dφ

dτ

)
(4)

If the massive body undergoes a 4-acceleration, aα, due to
a force, the equation of motion can be written as

aα = duα

dτ
+ �α

βγuβuγ (5)

where �α
βγ are the Christoffel symbols or affine connec-

tions; clearly, if the 4-acceleration is zero, the standard
geodesic equation is recovered. The required Christof-
fel symbols are simply calculated from the Eddington–
Finkelstein metric using GRTensor4 in mathematica.
The non-zero components needed for this study are

�t
tt = 2m2

r3
�t

rr = 2m(m + r)

r3

�r
tt = m(r − 2m)

r3
�r

rr = −m(2m + r)

r3

�t
tr = �t

rt = m(2m + r)

r3
�r

tr = �r
rt = −2m2

r3

(6)

The path of an accelerated object is also constrained
through the normalization of the 4-velocity of a massive
particle

u · u = gαβuαuβ = −1 (7)

and its orthogonality with the 4-acceleration

a · u = gαβaαuβ = 0 (8)

where gαβ are the components of the metric (Equation 2).
The final constraining equation is the normalization of the
4-acceleration

a · a = gαβaαaβ = a2 (9)

where a is the magnitude of the acceleration. Note that
this also represents the magnitude of the acceleration as
experienced by our faller due to the presence of the rockets.

3.3 Hyperbolic Motion

In an insightful paper, Rindler (1960) demonstrated that all
bodies undergoing constant acceleration undertake hyper-
bolic motion. While this result is well known in the
framework of special relativity, this paper was the first
to determine that accelerated bodies execute hyperbolic
motion in the curved spacetime of general relativity (see
also Gautreau 1969; Karlov & Rindler 1971). Through an
examination of the geometry of motion, Rindler (1960)

4 http://grtensor.phy.queensu.ca/
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showed that the components of the 4-velocity and 4-
acceleration can be given in terms of two other tensors,
Mα and Lα, such that

uα = (cosh aτ)Lα + (sinh aτ)Mα

aα = a[(sinh aτ)Lα + (cosh aτ)Mα] (10)

where a is the magnitude of the acceleration (Equation 9)
and τ is the proper time as measured by the accelerated
body. The tensors Lα and Mα, are orthogonal unit-vectors,
being time-like and space-like respectively. Operationally,
these tensors are parallel-propagated along the path of the
accelerated motion, such that

dLα

dτ
+ �α

βγLβuγ = 0

dMα

dτ
+ �α

βγMβuγ = 0 (11)

and the initial conditions can be set by noting that at τ = 0,
then Lα = uα and Mα = aα/a. Hence, given a fixed magni-
tude of acceleration, a, the normalization equations in the
previous section can be used to determine the components
of the 4-acceleration at and ar. With this, the equations of
motion can be derived from Equation (11) and the result-
ing coupled differential equations were integrated with
odepack5.

3.4 Killing Vectors and Conserved Quantities

In treating physical problems, conserved quantities are
often employed to ease the understanding of the solutions.
In general relativity, these are provided by Killing vectors.
Simply put, a Killing vector ‘points’ in a direction along
which the metric does not change. For a given Killing
vector, ξα, a conserved quantity can be found for an object
that moves along a geodesic to be

e = ξ · u = gαβξαuβ (12)

Clearly, the components of the Eddington–Finkelstein rep-
resentation of the Schwarzschild solution (Equation 2) are
independent of the t coordinate (i.e. a translation in this
coordinate leaves the metric the same) and its associated
Killing vector is given by ξα = (1, 0, 0, 0) and the resultant
conserved quantity is

e = gttu
t + gtru

r (13)

It must be remembered that this quantity is conserved
along geodesics and so only for freely-falling objects. For
objects undergoing acceleration (e.g. due to rockets) this
quantity is not conserved. This has significant implications
for maximizing the proper time below the event horizon.

With the above definition of the conserved quantity
related to the Killing vector, as well as the 4-velocity
and 4-acceleration normalization and orthogonality, a lit-
tle algebra reveals that for an acceleration of magnitude a,
then

ar = a
ure√

e2 + gtt

(14)

5 http://www.llnl.gov/CASC/odepack/

and

at = (1 + ute)

ure
ar (15)

It is important to remember that in the presence of a non-
zero acceleration, the quantity e is no longer conserved.

4 Results

4.1 Analytic Checks

Before considering the influence of the rocket, it is impor-
tant to check the computational solutions with comparison
to analytic results for freely falling objects. Assuming the
faller begins from rest beyond the event horizon at a radius
rs, so ur(rs) = 0, then the conserved quantity given by the
Killing vector (Equation 13) is

e = gttu
t = −

√
1 − 2m

rs
(16)

where ut at rs is determined from the normalization of the
4-velocity (Equation 7). Clearly, if the faller starts from
rs = ∞ then e = −1 and, conversely, if the faller drops
from rest at the event horizon, (rs = 2m), then e = 0; exam-
ining Equation (12), it is clear that e = 0 corresponds to
a 4-velocity which is orthogonal to the spacetime Killing
vector. As noted previously, the free fall journey from rest
at a particular radius to the central singularity is discussed
in many text books and will not be reproduced here, but
it can be shown that the proper time as measured by the
faller is given by

τmax = π

2
√

2m
r3/2

s (17)

(e.g. see problem 12–5 in Hartle 2003). Note this is the
proper time for the entire journey. The time spent on the
portion of the trip between the event horizon and central
singularity is given by

τ =
{

1√
2

[ rs

m

]3/2
arctan

[√
2m

rs − 2m

]

−
√

rs(rs − 2m)

m

}
m (18)

For all rs > 2m, the proper time experienced by the faller
between the event horizon and the singularity is less than
Equation (17). Conversely, the minimum time that can be
experienced by a free-faller (found by taking the limit of
rs → ∞) is

τmin = 4

3
m (19)

Figure 1 presents the results of the numerical inte-
gration of Equation (11), assuming the rockets are not
used and so the acceleration terms are zero. For this
example, four paths are examined, differing only in the
radial coordinate from which they are dropped from rest;
these are 3.0m (black), 2.5m (red), 2.1m (green), and
2.00000001m (blue). Note, as the normalization of the
4-velocity diverges for an object at rest at the event
horizon, it is not possible to numerically integrate these
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Figure 1 The left hand panel presents several free fall paths into a black hole. The paths begin at 3.0m (black), 2.5m (red) 2.1m (green), and
2.00000001m (blue). The solid curves represent the path in terms of the proper time of the faller, while the dashed path is with respect to the
coordinate time in Eddington–Finkelstein coordinates. The right hand panel presents the conserved quantity e (Equation 13).

Figure 2 As in Figure 1, for observers falling from r = 3m. Here, the black line represents a free faller, while the red, green, and blue represents
a rocketeer accelerating outwards at a = 0.5, 2.5 and 5.0 respectively.

equations with the initial condition of rs = 2m. In com-
paring the numerical results for the proper time below the
even horizon with the analytic predictions (Equation 18),
the maximum fractional error is found to be ∼0.005%.
Similarly, the fractional error in the conserved quantity
(Equation 13) is of a similar order over the journey to the
singularity.

4.2 Turning On the Rocket

For the purposes of this study, it is assumed that the faller
begins from rest at some distance beyond the black hole,
free falling to the event horizon. Once across the horizon,
the rocket is ignited. Figure 2 presents the case where such
an object is dropped from rest at r = 3m, with the black
curve representing a free falling path (again, the solid line
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Figure 3 As in Figure 1, except each faller undergoes an outward acceleration of a = 0.5 once inside the event horizon.

represents the curve with respect to proper time, while
the dotted line is that for coordinate time). For the red
curve, the rocketeer ignites the rocket as they pass r = 2m

and undergoes a constant, outward acceleration of a = 0.5,
while the green and blue lines suffer an acceleration of
a = 2.5 and a = 5 respectively. Looking at the left hand
panel, it is clear that the use of a rocket can increase the
proper time of the faller beyond that expected for a purely
free fall path (e.g. the red line). However, it is also apparent
there is a limit to the increased proper time through firing
the rocket as the more extreme accelerations (green and
blue line) experience less proper time than the free falling
observer on their journey to the singularity.

An examination of the conserved quantity from the
Killing vector, e in the right hand panel tells an interest-
ing story; free falling from rest outside the event horizon,
all of the fallers have the same value of e, but once the
rocket is fired inside the event horizon, the firing of the
rocket increases the value of e, and, moreover, the change
appears to be linear. In examining this, it is straightforward
to show, through a little algebra, that6

de

dr
= gtta

t + gtra
r

ur
= −a (20)

Figure 3 shows the free fall paths of observers from sev-
eral different radii to the event horizon. Once within the
horizon, each observer fires their rocket with the same
acceleration (a = 0.25) and continues their journey to
the central singularity. As expected from Equation (20),

6 An examination of a uniformly accelerating observer in special
relativity displays the same relationship.

the quantity e is conserved along the free fall path, but
once the rocket is fired e changes linearly with the radial
coordinate.

Armed with this knowledge, what should an observer
who has fallen from outside the event horizon do to max-
imize they survival time below the event horizon, if they
have at their disposal a rocket that can produce an acceler-
ation a? As noted earlier, the longest free fall time below
the event horizon occurs for an observer who falls from
rest at r = 2m (with e = 0) and any attempt at accelerated
motion for this observer will only diminish the proper
time (this is discussed in more detail in the next section).
Hence, if the observer starts from beyond the event hori-
zon with any non-zero value of e, the best they can do is
fire their rocket until e equals zero and then turn the rocket
off and coast on the e = 0 geodesic to the central singular-
ity. This is illustrated in Figure 4 for several observers who
falls from rest at r = 3m to the event horizon. Once within
the horizon, one rocketeer (black curve) continues their
free fall path to the singularity, while the others fire their
rockets (with a = 2). The red path is that of the observer
who continues to fire their rocket all the way down, while
the light blue, dark blue, and green cease firing when
e = −0.3, e = 0.3 and e = 0 respectively. An examination
of the left-hand panel of this figure shows that, in terms
of coordinate time, the act of firing the rocket delays the
collision with the central singularity. However, the time
as measured by each observer displays a quite different
behaviour; firing the rocket in this circumstance increases
the proper time between the horizon and the singularity.
However, it is clear that the observer who settles on the
path with e = 0 experiences the greatest proper time, with
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Figure 4 As in Figure 1, with the black line representing a free faller from r = 3m. The other lines correspond to an observer who free falls
to the event horizon and then fires their rocket with a = 2. For the red line, the faller fires their rocket all the way to the singularity, while the
dark blue, light blue, and green turn off their rocket when e = 0.3, e = −0.3 and e = 0 respectively. An examination of the proper time in the
left-hand panel reveals that it the path that settles on e = 0 that possesses the longest proper time.

Figure 5 As in Figure 1, with the black line representing a free faller, while the red line represents a rocketeer who, once across the event
horizon, accelerates inwards for a short while and then accelerates outwards. The amount of acceleration is tuned so that both the free faller
and the rocketeer arrive at the central singularity at the same coordinate time (dotted paths). As revealed by the solid paths, the free faller
experiences the greater proper time in the journey below the event horizon.

those that burn their rocket for shorter or longer periods
experiencing shorter proper times.

4.3 Clearing Up a ‘Mythconception’

As noted previously, black holes have fired the imagina-
tion of the general public and many websites can be found
that are dedicated to discussing their strange properties.

However, some authoritative websites carry statements
like the following7

A consequence of this is that a pilot in a powerful rocket
ship that had just crossed the event horizon who tried
to accelerate away from the singularity would reach

7 http://cosmology.berkeley.edu/Education/BHfaq.html
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it sooner in his frame, since geodesics (unaccelerated
paths) are paths that maximize proper time

The results of this study show that this clearly is not the
case; anyone who falls through the event horizon should
fire their rockets to maximize the time they have left before
impacting the central singularity. In dropping from rest at
the event horizon, the firing of a rocket does not extend
the time left, it only diminishes it.

While the quote is ambiguous about the initial con-
ditions for the faller, it appears that the error lies in the
assumption that the impact onto the central singularity is
the same event for the free faller and the rocketeer; if they
were then the above statement would be correct and the
free faller would experience the maximal proper time. As
an example of this, consider Figure 5. Again, the two fall-
ers start from rest and drop towards the event horizon.
After crossing the horizon, one continues the free fall path
towards the central singularity while the second acceler-
ates inwards for a short while and then swings their rocket
round to accelerate outwards such that both fallers arrive
at the central singularity at the same coordinate time (the
dotted path). In considering the two paths connecting the
two identical events in spacetime, the free faller, travel-
ling along the geodesic, experiences the maximum proper
time, and nothing the rocketeer does can exceed this.

5 Conclusions

Black holes remain amongst the most studied theoretical
consequences of general relativity, although standard texts
say little about the use of rockets once you are below the
event horizon. This paper has considered this very sce-
nario, showing that a rocketeer can enhance their survival
time by firing a rocket once across the event horizon. How-
ever, the rocketeer is still doomed to impact on the central
singularity in less than the maximal free fall time between
the event horizon and the centre.

Additionally, this paper has considered an apparent
confusion on the use of rockets below the event hori-
zon which suggest they hasten a fallers demise. This is at
odds with this study which shows that rockets can increase
survival time for virtually all fallers.

Finally, it should be remembered that ingoing light
rays in Eddington–Finkelstein coordinates travel at 45◦.
A simple examination of Figure 4 reveals something quite
interesting; while the constantly accelerating observing
within the event horizon (red line) experiences less proper
time in their fall to the singularity than the path that set-
tles on e = 0, an examination of the paths in coordinate
time shows that the constantly accelerating observer sees
a longer period of time pass in the outside universe than
the path on e = 0. A more detailed study of this effect will
be the subject of a future contribution.
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