
The Completeness and Reliability of Threshold

and False-discovery Rate Source Extraction Algorithms

for Compact Continuum Sources

M. T. Huynh
A,G, A. Hopkins

B,F, R. Norris
C
, P. Hancock

D,F,

T. Murphy
D,E,F, R. Jurek

C
, and M. Whiting

C

A
International Centre for Radio Astronomy Research, M468, University

of Western Australia, Crawley, WA 6009, Australia
B
Australian Astronomical Observatory, P.O. Box 296, Epping NSW 1710, Australia

C
CSIRO Astronomy & Space Sciences, Australia Telescope National Facility,

PO Box 76, Epping NSW 1710, Australia
D
Sydney Institute for Astronomy, School of Physics, The University of Sydney,

NSW 2006, Australia
E
School of Information Technologies, The University of Sydney, NSW 2006, Australia

F
ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)

G
Corresponding author. Email: minh.huynh@uwa.edu.au

Abstract: The process of determining the number and characteristics of sources in astronomical images is so

fundamental to a large range of astronomical problems that it is perhaps surprising that no standard procedure

has ever been defined that has well-understood properties with a high degree of statistical rigour on

completeness and reliability. The Evolutionary Map of the Universe (EMU) survey with the Australian

Square Kilometre Array Pathfinder (ASKAP), a continuum survey of the Southern Hemisphere up to

declination þ308, aims to utilise an automated source identification and measurement approach that is

demonstrably optimal, to maximise the reliability, utility and robustness of the resulting radio source

catalogues. A key stage in source extraction methods is the background estimation (background level and

noise level) and the choice of a threshold high enough to reject false sources, yet not so high that the catalogues

are significantly incomplete. In this analysis, we present results from testing the SExtractor, Selavy

(Duchamp), and SFIND source extraction tools on simulated data. In particular, the effects of background

estimation, threshold and false-discovery rate settings are explored. For parameters that give similar

completeness, we find the false-discovery rate method employed by SFIND results in a more reliable catalogue

compared to the peak threshold methods of SExtractor and Selavy.
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1 Introduction

The Australian Square Kilometre Array Pathfinder

(ASKAP) (Johnston et al. 2008; DeBoer et al. 2009) is a

new radio telescope being built on the Australian candi-

date Square Kilometre Array (SKA) site in Western

Australia. ASKAP will consist of 36 12-m antennas

spread over a region 6 km in diameter. Although the array

of antennas is no larger than many existing radio tele-

scopes, each antenna will be equipped with a phased-

array feed of 96 dual-polarisation pixels, giving it a

30 deg2 field of view and a very fast survey speed. The

Evolutionary Map of the Universe (EMU) project (Norris

et al. 2011) is a wide-field radio continuum survey plan-

ned for ASKAP. The primary goal of EMU is to make a

deep (rms, 10 mJy/bm) radio continuum survey of the

entire southern sky at 1.3GHz, extending as far north as

þ308 declination, with a 10-arcsec resolution. EMU is

expected to detect and catalogue about 70 million gal-

axies, including typical star-forming galaxies up to z¼ 1,

powerful starbursts to even greater redshifts, and active

galactive nuclei (AGNs) to the edge of the visible

universe. The amount of data involved with ASKAP

(,2.5GB/s, or 100 PB/year) requires that the source

detection and measurement is fast, robust and highly

automated.

Source detection and measurement is a problem com-

mon to all astronomical imaging surveys and projects, and

numerous software tools have been developed to perform

this initial step in the analysis of imaging data. With the

advent of large-area surveys the automation of this
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process is clearly crucial. This has led to a variety of

survey-specific source-finders being developed, each

optimised to address the specific issues associated with

the imaging technology of each survey and its corre-

sponding image properties and artefacts. What has not

developed in parallel is an analysis of the common steps in

source identification and measurement in order to assess

the optimal approaches or algorithms that should be used

to maximise the robustness and scientific utility of the

resulting source catalogues. This is partially a conse-

quence of images obtained using different telescope or

imaging technologies (UV/optical/near infrared/far infra-

red, compared to radio, or X ray, or gamma ray) having

very different characteristics. Consequently, the assump-

tions used in source-finders developed for images at one

wavelength or technology are not typically applicable for

others.

The analysis presented here looks at the first steps

taken in the source-finding process, those of background

estimation and thresholding. This is done explicitly in the

context of radio interferometric imaging, although the

expectation is that the conclusions should be more broadly

applicable. Furthermore, our investigation has a focus on

identifying an optimal approach for the source identifica-

tion and measurement to be implemented in the ASKAP

image-analysis software pipeline. This analysis comple-

ments that of Hancock et al. 2011 (in prep.), which

presents a detailed exploration of existing source-finding

tools, their underlying algorithms, and how they perform

on simulated radio interferometer images. Together, these

analyses comprise the first part of a thorough investiga-

tion of each stage of the source-identification and

measurement process that is being pursued as part of the

design study for EMU.

Several radio source identification and measurement

tools are in common use. These include the MIRIAD/AIPS

Gaussian fitting routines IMSAD, SAD and VSAD, SFIND

(Hopkins et al. 2002), and Duchamp (Whiting 2008) as

well as SExtractor (Bertin & Arnouts 1996). There are

also a variety of survey-specific tools, such as HAPPY

(a modified version of SAD used in the FIRST survey,

White et al. 1997), a machine-learning back-end to

VSAD used to construct the SUMSS catalogue (Mauch

et al. 2003), BDSM (used for the LOFAR source-finding,

N. Mohan, in prep.), and the floodfill algorithm being

used in the Australia Telescope Large Area Survey

(ATLAS) Data Release 2 (Murphy et al. 2007; Hales

et al. 2011 in prep.).

As stand-alone tools, none of these are adequate for

EMU, due to limitations evident in the treatment of

background estimation, approaches to treating a varying

noise level across an image, and importantly in the

numbers of artefacts incorrectly identified as sources.

Here we aim to test the approaches to both background

estimation and thresholding, in order to identify an

optimal approach for the EMU survey. All existing tools

have implemented the complete sequence of steps,

from background and noise-level estimation, through

threshold-setting and ‘source-pixel’ identification, to

source measurement. It is thus challenging to extract

robust information about each independent step in the

source-identification process. We do this here for a

selection of tools through a judicious choice of parameters

in the tasks we investigate, and interpret our results

cautiously as a consequence. We emphasise that we are

focussing here on two-dimensional data (radio continuum

images), with our results expected to be applicable

generically to two-dimensional image source

identification.

We present details of the simulated data used in our

analysis in Section 2, and the algorithms being tested in

Section 3. The background estimation and local rms noise

estimates are discussed in Section 4, with the reliability

and completeness statistics being used as a metric to

compare the different approaches in Section 5. Our results

are summarised in Section 6.

2 Simulated Data

2.1 ASKAP Simulation

We used the December 2010 set of simulations by the

ASKAP team, hereafter referred to as the ASKAP simu-

lation, to test the source extraction methods. This simu-

lation is of a full continuum observation with critically

sampled beams and full 6-km ASKAP configuration,

using an input catalogue of,7.7 million sources down to

1 mJy from the SKADS S3-SEX simulation (Wilman et al.

2008, 2010). The effect of the phased-array feed was

simulated by using 16 idealised beams, spaced in a rect-

angular grid one degree apart. This results in 30–40%

peak-to-peak sensitivity variation in the simulation. The

pixel scale of this simulation is 2.75 arcsec. For these tests

we removed the outer 500 pixels of the simulated con-

tinuum to reduce potential edge effects. The simulated

continuum image used in these tests is shown in Figure 1.

The noise in the simulated image is approximately

35 mJy rms, although it varies across the field.

2.2 Hancock et al. Simulation

The ASKAP simulation is made up of millions of sources

and includes instrumental artefacts. The SKADS S3-SEX

input source list contains many multiple sources (FRI and

FRII galaxies) as well as extended sources. We wish to

test the source extraction algorithms where deblending

and extended sources are not an issue.We alsowish to test

the algorithms for an idealised case of Gaussian noise. For

this we use the simulation of Hancock et al. 2011

(in prep.). In this simulation a catalogue of sources was

created with the flux of the sources drawn from the source

count distributionN(S), S�2.3 (Hopkins et al. 1998). The

sources are all compact (1–2 FWHM) when convolved

with the synthesised beam (30 arcsec). Amap with 25 mJy
Gaussian noise was then created and convolved with a

30 arcsec beam, before the sources were injected into the

image. The image has a pixel scale of 6 arcsec so that the
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synthesised beam of the telescope is sampled 5 times in

each direction. There are 15,000 sources in the simulated

image with fluxes .1 s.

3 Source Extraction Algorithms

A review of existing source-finding tools, their under-

lying algorithms, and how they perform on simulated

radio interferometer images, is presented by Hancock

et al. 2011 (in prep.), which compares the performance of

the source-finders IMSAD, SFIND, SExtractor, Selavy,

Floodfill and a newly developed tool, Tesla, in the iden-

tification and characterisation of artificial sources. Their

analysis emphasises some common failure modes in

existing tools, and identifies a potential solution, imple-

mented and tested using the new tool, Tesla, to rectify

these shortcomings.

To complement the analysis of Hancock et al. (2011, in

prep.), we focus here on the background estimation

and thresholding approaches as implemented in the

SExtractor, Duchamp and SFIND algorithms for source

extraction. SExtractor and Duchamp implement a fixed

signal-to-noise (S/N) thresholding technique while SFIND

uses a statistical method called false-discovery rate (FDR)

that sets a threshold based on a user-specified limit to the

fraction of falsely detected sources (Miller et al. 2001;

Hopkins et al. 2002). The thresholds set by these algo-

rithms are based on peak flux densities, not integrated flux

densities.

SExtractor (Bertin & Arnouts 1996) is a source extrac-

tion tool that detects sources through thresholding.

A group of connected pixels brighter than some threshold

above the background is identified as a detection.

SExtractor uses several steps to detect sources. These

are background subtraction, image filtering, thresholding,

deblending, and source parameterization (including

isophotal analysis, photometry and astrometry).

Duchamp (Whiting 2011, in prep.) is a source-finding

tool designed for use with spectral-line cubes, particularly

those dominated by noise with relatively small sources

present (for example extragalactic HI surveys or maser

surveys). Sources are identified by applying a threshold

(a uniform one for the entire image/cube) and grouping

sets of adjacent (or suitably close) voxels together. It is

possible to do various types of pre-processing to enhance

the detectability of sources (e.g. smoothing, spectral

baseline subtraction, wavelet reconstruction). Duchamp

forms the basis for the prototype source finder for the

ASKAP science processing pipeline. This implementa-

tion, known as Selavy to distinguish it from the standalone

Duchamp, is still under development. It has several

features that do not appear in Duchamp. These are

described in the paper by Whiting (2011) in this volume.

The key feature of these, relevant to this work, is the

ability to vary the threshold according to the local noise

properties. This uses a similar procedure to SExtractor:

defining a set box size, and, for each pixel, finding the

noise properties within a box centred on that pixel. In this

way, a different flux threshold can be defined for each

pixel, given a signal-to-noise ratio threshold. This work

makes use of the Selavy implementation, to take advan-

tage of this and other new features, and we refer to this

algorithm as Selavy hereafter.

FDR is a statistical procedure which is an alternative to

the simple threshold definition used in the identification

of sources. In SExtractor or Selavy (and many traditional

approaches to source identification) a source is initially

identified by pixels with an intensity above a threshold

defined as some multiple of the local rms noise level, xs.
In the FDR approach, the threshold is defined through a

robust statistical procedure that takes into account the

intensity distribution of all pixels in an image (both source

and noise), compared to an image of equal size containing

only noise, in setting a threshold. The resulting threshold

Figure 1 Left: the ASKAP simulated image with input sources from SKADS S3-SEX source list. Right: the Hancock et al. simulated image.

Black is positive in this greyscale. Both simulated images are approximately 4� 4 degrees in size.
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places a limit on the fraction of sources identified thatmay

be false based simply on the statistics of the noise

distribution (Miller et al. 2001). This procedure has been

implemented for source measurement in radio images in

the MIRIAD task SFIND (Hopkins et al. 2002) but while it is

also an option for defining the threshold in the stand-alone

version of Duchamp, it is not yet implemented in Selavy.

The key parameters for SFIND in implementing the FDR

algorithm are the rmsbox size (similar to themesh-size for

SExtractor) and a, which is the desired fractional limit to

the number of false detections in the final source list.

4 Background and Noise Maps

The first stage of source extraction in general is back-

ground estimation. In most astronomical images the

background is non-zero and varies over the frame. Radio

images from interferometeric synthesis techniquesmay in

general have a non-zero background, although in many

cases it is small (e.g. Rich et al. 2008). It is not expected

that the EMU images will have a significant non-zero

background, but the background estimation step is

nevertheless important. In the first place, a significant

non-zero background may be an indicator of problems

with the data or the observation, and can be used as a step

in quality control of the imaging data. Moreover, there

will be low-level diffuse emission close to the galactic

plane, and extended structures such as supernova rem-

nants at latitudes up to tens of degrees. For the identifi-

cation and measurement of point sources, these extended

diffuse structures and emission can be treated as a back-

ground and removed in the same fashion. The Planck

Early Release Compact Source Catalogue (PERCSC;

Planck Collaboration 2011) demonstrated that extraga-

lactic radio sources can still be extracted successfully in

the galactic plane with careful background estimation.

Regions away from the plane of the Milky Way are

expected to have a zero background.

It is also a common technique to apply some filtering or

weighting of images before the background and noise

estimation is performed. SExtractor allows both filtering

and weighting, and Selavy allows filtering, but SFIND does

not perform either filtering or weighting. These aspects of

background estimation are not explored in the current

analysis, in order to enable more direct comparison of the

actual background estimation algorithms being applied.

4.1 SExtractor

The valuemeasured at each pixel of a radio image is a sum

of the background signal and the emission from the radio

sources of interest. To construct a background map

SExtractor computes an estimator for the local back-

ground in a rectangular region, or ‘mesh’, of a grid that

covers thewhole image. The estimator is a combination of

ks clipping and mode estimation (similar to DAOPHOT;

see e.g. Da Costa 1992). In brief, the local background is

clipped iteratively until convergence at �3s around its

median and then the mode is estimated. The background

map is generated from a bicubic spline interpolation

between the meshes of the grid.

The choice of mesh size is very important. If it is too

large then small-scale variations in the background and

noise will be lost, but if it is too small then the background

and noise estimations will be affected by object emission.

Published surveys have found mesh sizes with widths of

8 to 12 times the point-spread function (PSF), or synthe-

sised beam size, produced good results for noise estima-

tion in deep radio continuum surveys (Huynh et al. 2005;

Schinnerer et al. 2007, 2010). In the Galactic plane,

PERCSC (Planck Collaboration 2011) found empirically

that a background mesh size of 4 to 24 beamwidths yields

a background image that successfully combines substruc-

ture in the background and the instrumental noise in the

image.

In this studywe explore mesh sizes of 3, 10, 20 and 100

times the beamwidth. SExtractor also has a smoothing

parameter which allows the background map to be

smoothed to suppress any local overestimations due to

bright sources, hence amesh size of 10 beamwidths with a

smoothing filter of 3 mesh sizes (30 beamwidths) is also

investigated. The difference between choosing a large

mesh size and smoothing on the same scale is subtle.

Choosing a mesh size of 30 beamwidths splits the image

into a grid of 30� 30 beamwidth squares, the background

level and rms is calculated in those regions, and then the

background and noise images are made from a bicubic

spline fit to this grid of statistics. Smoothing, on the other

hand, is amedian filter (here 30 beamwidths) applied after

the background and noise image is made from the smaller

mesh size (here 10 beamwidths). Smoothing is therefore

useful where the bicubic spline interpolation breaks

down, such as in crowded fields. Initial investigation

showed that mesh sizes of 10 and 20 beamwidths produce

satisfactory background and noise images, and subse-

quent investigation of reliability and completeness will

focus on those, as well as that with the smoothing filter

applied.

The background and rms noise images for mesh

sizes of 10, 20 and 30 (10 smoothed by 3) beamwidths

are shown in Figures 2 to 5. All background maps show

large-scale ripples in the image from sidelobes near the

brightest sources in the ASKAP simulations. The rms

noise maps show high-noise regions around these

brightest sources, as desired for spurious source rejec-

tion. The rms noise map, however, is affected by

fainter (,1 to 10mJy) point sources when the mesh

size is only 10 beamwidths (Figures 3 and 5). These

sources are well-cleaned and do not have significant

sidelobes, so they should not be contributing to the

noise in the image. We therefore find that using a mesh

size of 10 beamwidths but smoothing to 30 beamwidths

seems to result in the highest quality background and

rms maps. The effect of the phased array feed on the

ASKAP simulations can be seen in the grid pattern of

low- and high-noise regions in the background images

(Figure 3).
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Figure 2 The SExtractor background estimates of the ASKAP simulated image. The left and center images have mesh sizes of 10 and

20 beamwidths, respectively, and no smoothing. The right image has a mesh size of 10 beamwidths and a smoothing scale of 3 mesh elements.

The greyscale is �50 to 50mJy in all images. Black is positive in this greyscale.

Figure 3 The SExtractor noise image calculated from the ASKAP simulated image. The left and center images have mesh sizes of 10 and

20 beamwidths, respectively. The right image has amesh size of 10 beamwidths and a smoothing scale of 3mesh elements. The greyscale is 10 to

100 mJy in all images. Black is positive in this greyscale.

Figure 4 The SExtractor background estimates of the Hancock et al. simulated image. The left and center images have mesh sizes of 10 and

20 beamwidths, respectively, and no smoothing. The right image has a mesh size of 10 beamwidths and a smoothing scale of 3 mesh elements.

The greyscale is �30 to 30mJy in all images. Black is positive in this greyscale.
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4.2 SFIND

SFIND determines the fraction of expected false sources

by first estimating the background and rms for the

whole image using uniformly distributed regions of a

user-specified ‘rmsbox’ size in pixels. A normalised

image is made from the input image by subtracting the

mean and then dividing by the rms. If the image noise

properties are Gaussian, then the normalised image

would ideally show a Gaussian distribution with a

mean of 0 and s¼ 1. The false-discovery rate method

is implemented on this normalised image. Each pixel

is assigned a p-value, a probability that it is drawn

from the noise distribution, from this image. Therefore

the quality of this normalised image is important

and the ‘rmsbox’ parameter needs to be carefully

considered.

The output-normalised and rms images for rmsbox

sizes corresponding to 10 and 20 beamwidths are shown

in Figures 6 and 7. For both rmsbox sizes, the ASKAP

normalised images have a mean of 0.03 and standard

deviation of 1.04, when pixels with an absolute value

greater than 5 are excluded from the statistics. Similarly,

for the Hancock et al. simulations an rmsbox size of

10 beamwidths results in a mean of 0.10 and standard

deviation of 1.10, while 20 beamwidths results in a mean

of 0.10 and standard deviation of 1.08. So the normalised

images are close to the ideal Gaussian distribution of

0 mean and s¼ 1.

The rms image from an rmsbox size of 10 beamwidths

appears to be more affected by bright sources than rms

image using the larger rmsbox of 20 beamwidths. As with

the SExtractor rms maps, high noise estimates are

expected around the brightest sources with significant

sidelobes, and this is necessary to accurately reject false

detections. Sources as faint as a few mJy affect the noise

image for an rmsbox size of 10 beamwidths (Figures 6

and 7), but this is not desirable as these sources do not

have significant sidelobes.

4.3 Selavy

As with the other source-extraction algorithms, Selavy

requires the background and noise levels to determine a

threshold level. It does this by calculating the mean or

median for the background, and rms or the median

absolute deviation from the median (MADFM) for the

noise level. The median andMADFM are robust statistics

which are not biased by the presence of only a few bright

pixels, and are used by Selavy by default. The ASKAP

software pipeline implementation of Selavy used in this

work does not yet allow the output of the background and

noise images, so no direct comparison of these images can

be made.

4.4 Results of Background and Noise Estimation

To examine the background and noise images quantita-

tively we examined the distribution of pixel values of

these images. A mesh size of 10 beamwidths results in a

larger spread in background values than either 20 beam-

widths or 10 beamwidths plus smoothing (Figure 8). All

mesh sizes give a similar median pixel value in the

background image, i.e. similar average background

across the whole image. For comparison we also show the

pixel distribution for a mesh size of 3 beamwidths (grey

dotted line in Figure 8). This also has a similar median

pixel value, but a much greater variation in background

levels, indicating that the background determination is

probably affected by local structure (e.g. radio sources,

local noise peaks and troughs) for this small mesh size.

The pixel distributions of the rms noise images con-

structed by SExtractor and SFIND are shown in Figure 9. In

the case of the ASKAP simulations there is no significant

difference between using a 10 beamwidth mesh size and

20 beamwidth mesh size, with only minor differences

appearing in the distributions seen at the lowest rms noise

levels, below about 30 mJy. The rms noise level of the

ASKAP simulation is approximately 35 mJy, although

Figure 5 The SExtractor noise image calculated from the Hancock et al. simulated image. The left and center images have mesh sizes of

10 and 20 beamwidths, respectively. The right image has amesh size of 10 beamwidths and a smoothing scale of 3mesh elements. The greyscale

is 10 to 40mJy in all images. Black is positive in this greyscale.
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with 30–40% variations over the field. Both SExtractor

and SFIND appear to be recovering noise estimates that

peak around 35 mJy, for both mesh sizes tested.

In the case of the Hancock et al. simulation, however,

there is a significant difference in noise image pixel

values for mesh sizes of 10 versus 20 beamwidths. The

input rms noise level for this image was 25 mJy, but is
effectively a few percent higher due to the convolution

with a Gaussian beam leading to correlated noise between

pixels. All estimates seem to be slightly higher than

25 mJy, as expected, but with those from SFIND being

marginally (but systematically) lower than those from

SExtractor. We also see a bimodal distribution in the

noise image pixel values for some cases (20 beamwidths

and smoothing to 30 beamwidths). This is because the

convolutionwith aGaussianwas only applied to a circular

region of interest (as seen in Figure 1). The empty (noise-

only) areas in the full Hancock et al. image which lie

outside this region remain included in these statistics,

however, leading to the secondary ‘peak’ near 25 mJy. The
20 beamwidth mesh sizes in both cases show more

narrowly peaked distributions than those of 10 beam-

widths, and with the peak value at higher flux densities.

This is likely to lead, for the 20 beamwidth mesh sizes, to

fewer spurious detections (a higher reliability) for a given

threshold level, but possibly at the expense of

completeness.

The pixel distribution for an SExtractor mesh size of

3 beamwidths peaks at a substantially lower value for both

simulations, indicating underestimated rms noise values.

The reliability estimates in y 5 below imply that such a

small mesh size and the correspondingly lower rms noise

values inferred leads to an increased number of spurious

sources being detected.

Overall, the background estimation behaviours of both

SExtractor and SFIND, for common mesh sizes in each

simulation, were similar. It is clear, though, that the

choice of mesh size can lead to substantially different

background estimates, and the fact that this is typically a

user-defined step in existing source-finding tools suggests

that it is perhaps a challenging parameter to estimate in an

automated fashion.

5 Reliability and Completeness

The efficacy of different approaches to background esti-

mation and threshold setting is assessed in our analysis by

Figure 6 The SFIND normalised (left) and rms (right) images calculated from the ASKAP simulated image. Top row is for a 10 beamwidth

rmsbox, and the bottom is for a 20 beamwidth rmsbox. The greyscale of the normalised images is�3 to 3 s. The greyscale of the rms images is

25 to 65mJy. Black is positive in this greyscale.
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reference to the completeness and reliability statistics for

the resulting source catalogues, compared to the known

input catalogues. Here we present the details of these

metrics for different combinations of the approach to the

background estimation and the threshold level, for each of

the algorithms being explored, as implemented in the

three software tools.

Completeness is a measure of the fraction of real

sources detected. For our analysiswe define completeness

as the fraction of input sources which have a detected

Figure 7 The SFIND normalised (left) and rms (right) images calculated from the Hancock et al. simulated image. Top row is for a

10 beamwidth rmsbox, and the bottom is for a 20 beamwidth rmsbox. The greyscale of the normalised images is�3 to 3s. The greyscale of the
rms images is 20 to 60 mJy. Black is positive in this greyscale.

Figure 8 Histogram of the pixel values in the ASKAP background image (left) and Hancock et al. background image (right) generated by

SExtractor. Black and red lines are for 10 and 20 beamwidth mesh sizes, respectively. The blue line is for a mesh size of 10 beamwidths and a

smoothing scale of 3 mesh elements. Grey dashed line is for a mesh size of 3 beamwidths.
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output source counterpart. Input sources were deemed to

be detected if they had at least onemeasured sourcewithin

0.5 synthesised beam FWHM.

Reliability is a measure of the fraction of detected

sources that are real. For our analysis we define reliability

as the fraction of output sources which have an input

catalogue counterpart. The input source list was limited to

those artificial sources having a flux density greater than

1 s, in order to keep the number of ‘truth’ sources to a

manageable quantity. Sources fainter than 1 s, (which
exist in the input SKADS S3-SEX simulated source list

for the ASKAP image), are much fainter than the lowest

tested threshold (3 s) for our analysis. We do not expect

that the omission of these from our analysis will have any

effect on our results.

The measured sources were deemed to have a counter-

part based only on positional coincidence, specifically if

there is at least one ‘truth’ source within 0.5 synthesised

beam FWHM. We place no constraint on how the output

flux density compares to the ‘truth’ value, although this

is another criterion that has been applied by other teams in

determining whether a source has been recovered suc-

cessfully (e.g. Planck ERCSC team). Here we are not

exploring the properties of the source fitting routines,

limiting ourselves only to the statistics of detections as a

metric for assessing the background and noise-estimation

algorithms. Consequently we do not include the output

flux density estimates in assessing the recovery of input

artificial sources.

5.1 SExtractor

SExtractor detects, and performs source-measurement on,

pixel islands that lie above the user given threshold, which

we set as a multiple of the noise image calculated in

Section 3.1. This is in effect applying a local S/N

threshold, provided the rms noise image is accurate. Our

goal is to estimate the reliability and completeness of the

source extraction for various thresholds.

The reliability for SExtractor on the ASKAP simula-

tion, for thresholds of 3 s to 20 s, is summarised in

Table 1. The reliability rises sharply between 3 s and

5 s from 54% to 88%. There is little difference in results

from noise maps made from a 10 beamwidth mesh size

compared to that made with a 20 beamwidth mesh size or

with a 3 mesh-size smoothing. The 15 s and 20 s thresh-

old SExtractor catalogues have surprisingly low reliabil-

ities of only 92% and to 94%, and it turns out that this is

due to a deblending issue. Multiple bright sources may be

extracted as a single source with a position halfway

between the input sources, hence they have no ‘truth’

counterpart. This effect is exacerbated when the threshold

level is set so high, and a relatively large fraction of the

input sources fall into this scenario.

Figure 9 Histogram of the pixel values in the ASKAP rms images (left) and Hancock et al. rms images (right) generated by SExtractor and

SFIND. Black and red lines are for SExtractor with 10 and 20 beamwidth mesh sizes, respectively. The blue line is for SExtractor with amesh size

of 10 beamwidths and a smoothing scale of 3mesh elements. The grey dashed line is for SExtractor with amesh size of 3 beamwidths. The green

and gold lines are for SFIND with rmsbox of 10 and 20 beamwidths, respectively.

Table 1. Summary of SExtractor output catalogue reliability for ASKAP simulation

Mesh size Threshold s

3 4 5 6 10 15 20

3 beamwidths 43.6% 73.7% 85.5% 88.2% 90.7% 89.6% 89.4%

10 beamwidths 53.9% 80.5% 88.2% 90.6% 92.3% 92.7% 93.3%

20 beamwidths 54.4% 81.3% 88.5% 90.1% 92.5% 92.3% 94.0%

10 bwidthsþ 3� smoothing 53.9% 81.1% 88.8% 91.3% 92.9% 93.6% 94.4%

100 beamwidths 54.7% 81.7% 88.9% 91.6% 93.1% 93.6% 93.9%
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The reliability for SExtractor on the Hancock et al.

simulation is summarised in Table 2. The reliability rises

sharply between 3 s and 4 s, from 88% to 98% in the case

of a 10 beamwidth mesh size. Again, there is no signifi-

cant difference to the reliability from applying the larger

mesh size or smoothing in the noise calculation. The

reliability is almost 100% by a threshold of 5 s, which is

expected in this simulation where the noise is completely

Gaussian and the ‘truth’ catalogue is known.

The completeness as a function of input source flux

density is shown in Figure 10, for SExtractor thresholds

of 3, 4, 5, and 10 s. A known bug in SFIND limits results to

an rmsbox size of 10 beamwidths (see 5.2), so we show

results from a mesh size of 10 beamwidths to allow a

comparison across all three algorithms. The completeness

increases significantly at the faint flux density levels

going from 10 s to 3 s, as expected. The completeness

does not reach unity, however, even for low thresholds of

3 s and 4 s, for the ASKAP simulation. Since the noise is

, 40 mJy in the ASKAP simulation we expected com-

pleteness to be about 100% by,400 mJy for these detec-
tion thresholds. In comparison, SExtractor performs as

expected with the Hancock et al. simulations and in this

‘perfect’ image the completeness reaches 100% for 3 s
and 4 s thresholds at about 300 mJy.

Tables 3 and 4 summarise the completeness for

various flux density bins and SExtractor mesh sizes for

a threshold of 3 s. For both simulations the complete-

ness increases in the lowest flux density bins as the mesh

size is decreased to 3 beamwidths. This is consistent

Table 2. Summary of SExtractor output catalogue reliability for Hancock et al. simulation

Mesh size Threshold s

3 4 5 6 10 15 20

3 beamwidths 76.3% 91.0% 92.8% 92.2% 89.5% 87.5% 85.4%

10 beamwidths 88.4% 97.7% 98.8% 99.0% 100.0% 100.0% 100.0%

20 beamwidths 89.5% 97.7% 98.9% 99.0% 99.4% 100.0% 100.0%

10 bwidthsþ 3� smoothing 89.8% 97.7% 99.1% 99.0% 99.5% 100.0% 100.0%

100 beamwidths 90.6% 97.9% 99.0% 99.0% 99.5% 100% 100%

Figure 10 The completeness as a function of input source flux density for SExtractor and SFIND on ASKAP (left) and Hancock et al. (right)

simulations. This is for SExtractor and SFIND background mesh/rmsbox sizes of 10 beams.

Table 3. Summary of completeness for SExtractor 3 r runs on
the ASKAP simulation, for mesh sizes of various beamwidths

as shown

S bin (mJy) SExtractor 3 s mesh size (beamwidths)

3 10 20 100

40–50 5.7% 5.0% 4.9% 4.5%

50–70 8.9% 8.4% 8.2% 7.5%

70–100 20.5% 20.1% 19.6% 18.2%

100–140 37.7% 38.1% 37.7% 35.2%

140–200 64.1% 66.6% 66.5% 64.5%

200–300 80.2% 81.7% 81.4% 81.0%

300–500 83.3% 84.0% 83.8% 84.2%

500–800 79.7% 79.3% 79.9% 80.1%

800–1300 78.1% 79.1% 78.7% 78.6%

Table 4. Summary of completeness for SExtractor 3r runs on
the Hancock et al. simulation, for mesh sizes of various beam-

widths as shown

S bin (mJy) SExtractor 3s mesh size (beamwidths)

3 10 20 100

40–50 11.4% 9.2% 8.3% 8.3%

50–70 20.7% 17.4% 17.0% 16.6%

70–100 41.3% 41.3% 41.0% 41.0%

100–140 70.5% 73.0% 73.2% 72.6%

140–200 84.8% 87.4% 87.8% 87.6%

200–300 89.7% 90.2% 90.9% 90.7%

300–500 94.0% 95.7% 95.3% 95.3%

500–800 94.3% 95.0% 94.3% 95.0%

800–1300 97.4% 93.4% 93.4% 93.4%
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with the lower reliability of sources for this small mesh

size. In this case more sources are extracted, hence the

greater completeness, but at the cost of reduced relia-

bility. At high flux densities the completeness does not

appear to have a significant trendwithmesh size, but this

is as expected as small differences in the local noise

value are only a tiny fraction of the source total flux

density and therefore unlikely to affect whether a source

is detected.

To further explore why the completeness does not

reach unity for the ASKAP simulations, we examined

bright (S. 1mJy) input sources which were not

extracted. The SKADS input list results in many

multiple-component, or extended, sources which the

extraction algorithms extract as one source at the mid-

point between the two input sources (Figure 11). These

input sources are extracted as a single source with a

position further than 0.5 synthesised beam FWHM from

the input sources, and hence the input sources are not

identified as having been detected. In addition to the

deblending issue, which accounts for some of the

incompleteness, there are also extended sources with

large total flux densities but low peak flux densities

(Figure 11). This results in sources being missed by

SExtractor as it searches only for pixels above the

detection threshold.

5.2 SFIND

The reliability and completeness are again estimated for

SFIND. The reliability estimates for the ASKAP simulation

are presented for a values of 0.1, 1, 2, 5 and 10 percent in
Table 5, for an rmsbox size of 10 beamwidths only. Due to

a known bug, apparently triggered by particular config-

urations of pixels in a complex source, SFIND failed to

return a source list on this simulation for the larger rmsbox

size (although the background estimation and associated

images were correctly produced). The reliability for all

tested values of a ranges from 91.9% to 92.5% for the

ASKAP simulation. The reliability is quite flat for this

simulation, over typical choices for a. We expect the

reliability to be better than 99% for a¼ 0.1. The values

here, as for SExtractor, are affected by the bright sources

in the image which aren’t in the original input catalogue.

For the Hancock et al. simulation, and an rmsbox size of

10 beamwidths, the reliability increases from 91% to 97%

for a¼ 10 to 0.1 (Table 6). The result is very similar for a

rmsbox size of 20 beamwidths with the Hancock et al.

simulation.

The completeness as a function of input source flux

density is plotted in Figure 10, for SFIND a values of 0.1, 1,
2, and 5 percent. For the ASKAP simulation, we find the

completeness increases significantly between 100 and

300 mJy for all a values, but as for SExtractor the com-

pleteness does not reach unity at high flux density levels.

Here SFIND with a values of 1 to 5 gives completeness

results that span similar values to those of SExtractor run

with thresholds of 4 to 5 s. The reliability of the SFIND

sources at these levels of completeness, however, is

,92% compared to 80 to 88% for the SExtractor sources.

In the case of the Hancock et al. simulation, an SFIND a
value of 5 results in completeness similar to SExtractor

with a threshold of 4 s (Figure 10), but with slightly worse
reliability (93% compared to 98%). An SFIND a value of

0.1, though, gives a completeness similar to an SExtractor

threshold of 5 s as well as similar reliability (virtually

100%), but 7%more sources were extracted by SFIND with

these parameters.

Figure 11 Examples illustrating why completeness does not reach

unity for ASKAP simulations. Red circles are bright (S. 1mJy)

sources in the input list which are not extracted. Blue circles are

sources extracted by SExtractor with a threshold of 5 s. Just left of
center, the two red circles are extended sources with large total

fluxes but low peak fluxes, and hence they lie below the detection

threshold. Right of center is an example of a bright multiple

component source which is extracted as one source with a position

(blue circle) between the two components (red circles). Bottom of

center is another example where poor deblending results in a bright

input source that is marked as unextracted due to its poor output

position.

Table 5. Summary of SFIND output catalogue reliability for
ASKAP simulation

rmsbox size a (%)

10 5 2 1 0.1

10 beamwidths 91.9% 92.5% 92.3% 92.2% 92.1%

Table 6. Summary of SFIND output catalogue reliability for
Hancock et al. simulation

rmsbox size a (%)

10 5 2 1 0.1

10 beamwidths 90.9% 93.1% 95.2% 96.1% 97.1%

20 beamwidths 92.0% 94.5% 95.8% 96.4% 97.3%
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5.3 Selavy

We estimated the reliability and completeness of the

Selavy source extraction on both sets of simulations.

The reliability results are shown in Tables 7 and 8, for the

ASKAP andHancock et al. simulations, respectively. The

reliability of Selavy increases sharply between 3 and

10 s, but the reliability does not reach 100% for either

simulation. The reliability is 88% and 85% for Selavy

20 s runs on the ASKAP and Hancock et al. simulations,

respectively. It is surprising that the reliability is greater

for the ASKAP simulation, as the Hancock et al. image

has only Gaussian noise and threshold techniques are

expected to perform better in the case of pure white noise

with no introduced instrumental artefacts. Although

Selavy is more reliable than SExtractor at 3 s for the

ASKAP simulation, it is 5 to 10% less reliable than

SExtractor overall. It also does not reach a reliability of

100% at the brightest thresholds for the Hancock et al.

simulations, whereas this performance is reached by

SExtractor. This is likely to be a deblending issue as we

found that Selavy split a large proportion of bright sources

into separate components, which would then not be

matched to an input source. Limiting Selavy to fit only

one or two Gaussians per detected ‘island’ of bright

pixels may improve results and this needs to be tested in

future work.

The completeness of the Selavy algorithm on both sets

of simulations is shown in Figure 12. The completeness of

SExtractor and Selavy are very similar for the Hancock

et al. simulation. However, for the ASKAP simulation we

find that Selavy is 5 to 10% more complete than

SExtractor for the same nominal threshold limit. For the

ASKAP simulations, Selavy reaches a maximum of

,90% completeness at high flux densities at low thresh-

olds, compared to a maximum completeness of ,80%

with SExtractor. So Selavy appears to be more complete

than SExtractor, for the same nominal threshold limit, but

this greater completeness comes at the cost of lower

reliability.

Comparing Selavy to SFIND, we find a similar outcome

in that Selavy reaches relatively higher completeness but

has much lower reliability. In the case of the ASKAP

simulations, Selavy with a threshold of 5 s has a com-

pleteness better than SFIND with a¼ 0.1 to 5, however

reliability is,10% worse. For the Hancock et al. simula-

tions the Selavy comparison to SFIND ismuch like that with

SExtractor, except that Selavy has,15% lower reliability

than SExtractor. For example, a Selavy threshold of 4 s
gives a completeness level comparable to SFIND with

a¼ 2, but with ,30% less reliability (68% compared

to 95%).

5.4 Bright Source Region in ASKAP Simulation

The ASKAP simulation has several regions near bright

sources which contain significant sidelobes. The perfor-

mance of source extraction algorithms may be degraded

in regions with imaging artefacts, so we examine the

reliability and completeness of the three source extraction

algorithms in one such region (shown in Figure 13).

Table 7. Summary of Selavy output catalogue reliability for
ASKAP simulation

Box size Threshold s

3 4 5 6 10 20

10 beamwidths 68.8% 76.9% 81.3% 82.0% 85.1% 87.8%

20 beamwidths 69.6% 77.0% 80.5% 80.4% 84.0% 86.5%

Table 8. Summary of Selavy output catalogue reliability for
Hancock et al. simulation

Box size Threshold s

3 4 5 6 10 20

10 beamwidths 62.7% 68.2% 70.6% 72.5% 77.7% 84.6%

20 beamwidths 63.4% 68.0% 70.4% 72.4% 76.9% 84.3%

Figure 12 The completeness as a function of input source flux density for SExtractor and Selavy on ASKAP (left) and Hancock et al. (right)

simulations. This is for SExtractor and Selavy background mesh/median box sizes of 10 beams.
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This region, in the center of the top-right quadrant of the

ASKAP image, has the most significant sidelobes in the

ASKAP simulation. The reliability and completeness for

two radial distances was investigated: distances less than

10 beams from the bright (3.6 Jy) source, and distances

10 to 20 beams from the bright source. The results are

summarised in Tables 9 to 11.

SExtractor is only 2 to 25% reliable for the region closest

to the bright source (,10 beams), for the thresholds

explored, and differentmesh sizes do not affect the reliabil-

ity or completeness significantly. SFIND and Selavy perform

better in this region, with reliability reaching 100% for the

most stringent parameters. However, the reliability of

Selavy close to the sidelobe-producing source is signifi-

cantly degraded using a mesh size of 20 beamwidths.

SExtractor reaches 100% reliability for high thresh-

olds in the region 10 to 20 beams from the sidelobe

producing source, but is only ,10% reliable at 5 s and

,6% reliable at 3 s. mesh sizes of 20 beamwidths or

10 beamwidths with smoothing give marginally better

results than a mesh size of 10 beamwidths at these low

thresholds. SFIND is 100% reliable, and Selavy is 75%

reliable or better, in this region for all the thresholds

explored. So while Selavy is less reliable than SExtractor

overall (see Section 5.3), it seems to perform better in this

high noise region. The SFIND generated noise map has

values marginally lower than the SExtractor ones in this

region, so this confirms the FDR routine is more effective

in rejecting false sources compared to a simple peak

thresholding technique.

Figure 13 Region, approximately 30� 30 beams, near a bright (3.6 Jy) source in the ASKAP simulation which contains significant sidelobes.

Red crosses mark positions of sources in the input catalogue within 20 beams of the bright source.

Table 9. Summary of SExtractor output catalogue reliability and completeness (in parentheses) near a bright sidelobe-producing
source in the ASKAP simulations (results are for two radial distances: sources less than 10 beams in distance, and sources at 10 to 20

beams in distance)

Mesh size Threshold s

3 5 10 20

Distance, 10 beams

10 beamwidths 1.9% (14.3%) 2.7% (14.3%) 7.1% (14.3%) 25% (14.3%)

20 beamwidths 2.0% (14.3%) 2.6% (14.3%) 7.1% (14.3%) 25% (14.3%)

10 bwidthsþ 3� smoothing 2.1% (14.3%) 2.6% (14.3%) 7.1% (14.3%) 25% (14.3%)

10 beams,Distance, 20 beams

10 beamwidths 4.9% (21.7%) 10.3% (17.4%) 100% (13.0%) 100% (8.7%)

20 beamwidths 6.0% (26.1%) 11.1% (17.4%) 100% (13.0%) 100% (8.7%)

10 bwidthsþ 3� smoothing 5.9% (26.1%) 12.5% (17.4%) 100% (13.0%) 100% (8.7%)
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The greater noise in this region of the image results in

low completeness for all three algorithms. The high

reliability of SFIND and Selavy comes at the cost of lower

completeness compared to SExtractor. However, even

with a threshold of 3 s, SExtractor has a maximum

completeness of only 26%. Amesh size of 10 beamwidths

instead of 20 beamwidths results in approximately 5%

worse completeness, at the lowest thresholds, for

SExtractor.

Finally we note that there are only 7 input sources

within 10 beams of the bright source, and 23 input sources

between a distance of 10 and 20 beams. More analysis on

other regions is needed to derive better statistics, but from

this work we can conclude that SFIND and Selavy perform

better than SExtractor in regions affected by significant

sidelobes from a bright source.

6 Summary and Conclusions

We have tested SExtractor, Selavy and SFIND to explore

the effects of background and noise estimation, along

with two approaches to thresholding, a simple ns level

compared to the false-discovery rate method, on source

extraction. The tests were performed on two sets of

simulations, the ASKAP simulations which are based on

SKADS input source catalogue and include instrumental

artefacts, and the Hancock et al. simulation which has

only Gaussian noise. The Hancock et al. simulation is an

idealised case that is useful for testing the algorithms in

‘perfect’ conditions.

The first step in source extraction is background

subtraction and noise estimation. We have confirmed

the results from the Planck team (Planck Collaboration

2011) and previous deep continuum radio surveys (Huynh

et al. 2005; Schinnerer et al. 2007, 2010) that mesh sizes

of 10 to 20 PSFs or beamwidths produce satisfactory

background and noise images. We find that SExtractor

background mesh sizes of 10 and 20 beamwidths produce

similar results in terms of reliability. A visual inspection

shows the background and noise images are still affected

by local bright sources for a mesh size of 10 beamwidths,

but combining a mesh size of 10 beamwidths with

smoothing of 3 meshes produces the highest quality

background and noise images. The reliability of the

catalogues resulting from 10 and 20 beamwidth mesh

sizes, however, does not differ significantly.

The fact that the background estimation step, so crucial

in all the subsequent stages of source-identification and

measurement, still needs to be manually tuned in most

existing source-detection software, is a major concern.

The optimum mesh size for background subtraction and

noise estimation is likely to be image specific, and to vary

perhaps substantially depending on the distribution of

sources within the image. Developing an automated

process for setting the mesh size when implementing

the background and noise properties is clearly a priority,

and will need to be developed as part of an automated

pipeline for radio telescopes of the future such as ASKAP

and the SKA. One possible method could be to use a tree-

based approach, identifying rms noise levels for thewhole

image and for progressively smaller regions, so that each

pixel can be associated with a ‘tree’ of rms noise values

on each scale. Identifying the scale for which the rms

noise plateaus for each pixel could be a suitable approach,

and will be tested as part of the EMU design study.

Table 10. Summary of SFIND output catalogue reliability and completeness (in parentheses) near a bright sidelobe-producing source
in the ASKAP simulations (results are for two radial distances: sources less than 10 beams in distance, and sources at 10 to 20 beams

in distance)

Mesh size a (%)

10 5 1 0.1

Distance, 10 beams

10 beamwidths 25% (14.3%) 50% (14.3%) 50% (14.3%) 100% (14.3%)

10 beams,Distance, 20 beams

10 beamwidths 100% (13.0%) 100% (13.0%) 100% (13.0%) 100% (8.7%)

Table 11. Summary of Selavy output catalogue reliability and completeness (in parentheses) near a bright sidelobe-producing source
in the ASKAP simulations (results are for two radial distances: sources less than 10 beams in distance, and sources at 10 to 20 beams

in distance)

Mesh size Threshold s

3 5 10 20

Distance, 10 beams

10 beamwidths 25% (14.3%) 33.3% (14.3%) 100% (14.3%) 100% (14.3%)

20 beamwidths 8.3% (14.3%) 12.5% (14.3%) 33.3% (14.3%) 50% (14.3%)

10 beams,Distance, 20 beams

10 beamwidths 75% (13.0%) 100% (13.0%) 100% (8.7%) 100% (8.7%)

20 beamwidths 75% (13.0%) 100% (13.0%) 100% (8.7%) 100% (8.7%)
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The thresholding comparison was limited for the

ASKAP simulation due to a ceiling in the completeness

values, resulting from bright input sources with small

separations that were not deblended well by any of the

algorithms, and by the low peak flux density values for

extended sources. Nevertheless, in this simulation we find

that SFIND with a values of 1 to 5 results in similar

completeness to SExtractor run with thresholds of 4 to

5 s. The reliability of the SFIND sources is higher however,

,92% for SFIND compared to 80–88% for the SExtractor.

Selavy results in higher completeness than SExtractor or

SFIND for the ASKAP simulations, but at the cost of lower

reliability. In regions with significant artefacts such as

sidelobes from bright sources SFIND and Selavy perform

much better than SExtractor in rejecting spurious

detections.

In the case of the Hancock et al. simulation, where

noise is Gaussian and the sources more well-separated,

SExtractor is 98% reliable with thresholds of 4 s or

greater. For the Hancock et al. simulation we find that

ns threshold approach of SExtractor and the FDR

approach of SFIND perform similarly, although the FDR

thresholding of SFIND seems to give somewhat better

reliability at thresholds that produce comparable levels

of completeness. In this idealised simulation SExtractor

and Selavy gives similar completeness but the Selavy

sources are 15% to 30% less reliable.

There is a trade-off between completeness and reli-

ability in source extraction algorithms: parameters which

give high completeness result in lower reliability. Overall,

the false-discovery rate method, as tested with SFIND,

results in more reliable sources than SExtractor or

Selavy, for parameters that give similar completeness

levels. While more fine-tuning of Selavy, the prototype

source finder for EMU, is required, our analysis suggests

that the FDR approach is worthwhile pursuing and we

recommend this be implemented in Selavy.

This analysis demonstrates that existing approaches to

background and noise estimation seem to be limited not

by the specific algorithms but rather the requirement to

select appropriate mesh sizes over which to calculate a

‘local’ background and noise estimate. Future work will

require development of an automated background mesh

size estimation process for the ASKAP software pipeline,

in particular for the EMU images. In addition, a comple-

mentary analysis of the source-fitting and parameter

measurement approaches is also underway (Hancock

et al. in prep.) which will establish the optimum

approaches to these latter stages of source extraction.
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