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Abstract: The effect of synchrotron losses on diffusive shock acceleration (DSA) at
many shocks is treated numerically. Synchrotron losses determine a maximum energy
to which electrons can be accelerated through DSA, and this is referred to as the
synchrotron cutoff, p.. The distribution of accelerated electrons after many shocks is
found (a) for a distribution injected at the initial shock, to tend to a plateau [f(p)
independent of p < 0-1p.], and (b) for the cumulative distribution from injection at
each shock to tend to f(p) oc p~° with b~ 3 well below the synchrotron cutoff with a
peak in the slope (bmin = 2) at p < 0-1p.. It is suggested that the latter result might
account for the flat synchrotron spectra observed in some Galactic Centre sources.
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1 Introduction

Diffusive shock acceleration (DSA) is the favoured
acceleration mechanism for relativistic electrons
in most synchrotron sources (e.g. the reviews by
Drury 1983; Blandford & Eichler 1987). DSA
results naturally in a power law electron energy
or momentum distribution, and hence a power law
synchrotron spectrum. In terms of the momentum
distribution function, a power law distribution is of
the form f(p) o< p~%, where p is the momentum and
b is the power law index. A power law synchrotron
spectrum of the form I, oc v=%, where v is the
frequency, corresponds to electrons with b = 2a+ 3.
DSA at a single shock gives a power law distribution
with b = 3r/(r—1), where r is the compression ratio
of the shock, which has a maximum value r = 4
for strong shocks in a nonrelativistic gas with ratio
of specfic heats 5/3. Hence the flattest distribution
that can be produced by a single shock has b =4
and hence a=0-5.

Flat radio spectra (« = 0) in some extragalactic
sources are usually attributed to self-absorption (e.g.
Kellermann & Pauliny-Toth 1969). For the self-
absorption to produce a flat spectrum over at least
a decade in frequency (as often observed) requires
specific geometric properties in the source (e.g.
Marscher 1977), leading to a description of the self-
absorption interpretation as a ‘cosmic conspiracy’
model (Cotton et al. 1980). There are nonthermal
sources with flat spectra in the Galactic Centre region
(e.g. Yusef-Zadeh 1989) which are not plausibly self-

absorbed. Thus, at least for the galactic sources
with flat synchrotron spectra, a more plausible
explanation is that the the electron distribution
is flatter than b = 4 (e.g. Melrose 1996). It is
known that DSA at a sequence of shocks (‘multiple
DSA’) tends to a distribution f(p) oc p=3 after an
arbitrarily large number of shocks (e.g. White 1985;
Achterberg 1990; Schneider 1993; Melrose & Pope
1993; Pope & Melrose 1994), and this does imply
a flat synchrotron spectrum, « =~ 0, as required.
However, an explanation of flat spectra in terms of
multiple DSA in this way has some unsatisfactory
features: the approach to the asymptotic distribution
f(p) o p~2 is slow and requires that a large number
of shocks propagate across the acceleration region;
the particles must escape from the system before
they have time to cool due to synchrotron losses;
and multiple DSA cannot account for even weakly
inverted spectra, a < 0. However, the relation
between the actual particle distribution (which is
inhomogeneous due to the shocks and only approaches
f(p) < p~3 asymptotically) and the synchrotron
spectrum involves an integral over the entire source,
and this needs to be modelled in detail to determine
the actual synchrotron spectrum.

In this paper we show that synchrotron losses
combined with multiple DSA can be efficient in
forming flat and inverted synchrotron spectra. The
underlying idea is threefold. First, it is known that
the effect of synchrotron losses on a power law
distribution is to steepen a distribution with b > 4,
and to cause a pile up (an integrable divergence)
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for b < 4, as we show explicitly in Section 5 below.
Second, multiple DSA is known to form a curved
distribution with the flatter portion (b < 4) moving
to higher energies as the number of shocks increases.
Third, synchrotron losses, which are most important
in the compressed-B region just downstream of the
shock, limit the maximum p to which the particles
can be accelerated. We refer to this maximum p as
the synchrotron cutoff, which is defined in a more
formal manner below. Combining these ideas, when
multiple DSA produces a slope b < 4 just below the
synchrotron cutoff energy, synchrotron losses tend to
flatten the distribution even further. Our objective
in this paper is to describe this flattening in detail
using a simple numerical model. In this model all
processes (DSA, synchrotron losses and adiabatic
decompression here) are treated as independent,
described by relatively simple operators, and a
combination of processes is treated by applying the
appropriate operators sequentially.

The model is described in Section 2. For the
combination of DSA and synchrotron losses the
assumption that the processes may be treated
sequentially is justified in Section 3. Our results
are presented in Section 4, and their interpretation
is discussed in Section 5. Our conclusions are
summarised in Section 6.

2 Method

We treat the effects of DSA at a single shock, adiabatic
decompression and synchrotron losses in terms of
operators Lgsa(p), Ldec(P), Lioss(p), respectively,
operating on an initial distribution function to
produce the final distribution function. DSA is
described by (e.g. Melrose 1986, p. 249)

Lasa()F(p) = bp" /0 Ty ), ()

with b = 3r/(r — 1), where r (1 < r < 4) is
the compression ratio for the shock. One has
b >4 with b — 4 for r — 4, corresponding to the
strongest possible shock in a nonrelativistic plasma.
Decompression is required to reduce the magnetic
field B from its compressed value B = rBy (which
applies strictly only to a perpendicular shock) just
behind the shock to its ambient value B = By,
before the arrival of the next shock. Then p? o B
implies

Lacc(p) f(p) = f(pr¥). (2)

Synchrotron losses are described by dp/dt = —Ap?,
A = (321/9)(r2/m2c?)(B?/2u0), where 7. is the
classical radius of the electron, and m,. is the
mass of the electron. Let p’ be the solution of
dp/dt = —Ap? at t that produces p at t+ At,
so that one has p’ = p/(1 — pAAt). Then, if the
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synchrotron losses are allowed to operate for a time
At, Liouville’s theorem implies

Lioss(p) f(p) = (1 — pAAL) ™ f(p/[1 — pAAL])).  (3)

The dependence of the synchrotron loss rate on the
strength of the shock, A o r2, implies that for a
strong shock (r > 1) the losses are most rapid in
the compressed-B region just downstream of the
shock. Assuming that the losses are important
only in this region, At may be identified as the
time spent by the electron there. However, for our
numerical calculations only the combination AAt
need be specified, and this is a free parameter.

In our calculations, we inject an initial §-function
distribution, proportional to é(p — pp), and subject
it sequentially to DSA, synchrotron losses and
decompression. In multiple DSA, the resulting
output distribution is the input into a second
identical sequence, and this sequence is repeated
as many times as desired. We consider both the
case where there is a single initial injection and the
case where there is an injection at each shock. In
the absence of synchrotron losses it is necessary to
extend the calculations to very much higher p-values
than are ultimately of interest to avoid rounding
errors. A rounding error at pp.. after the first
shock propagates down to r—(N=1/3p . after N
shocks, and for large N this leads to errors in
conservation of particles. We chose a sufficiently
high pnax such that particles are conserved to an
accuracy of < 0-5% for N = 50.

Another feature of the model is the neglect of
the spatial coordinates, an assumption which is
usually made in this context. The underlying idea is
that spatial inhomogeneities are taken into account
through implicit coupling between separate regions
of space. Here such couplings are implicit in the
operators themselves. For example, Lasa couples
the downstream to the upstream region, and I:dec
couples the region immediately behind the shock to
the decompressed region further downstream.

3 Alternative Treatment of DSA with Synchrotron
Losses

Our sequential procedure for treating synchrotron
losses involves neglecting the synchrotron losses so
that DSA forms a distribution that extends well
beyond the synchrotron cutoff, and then allowing
synchrotron losses to modify this distribution. In
order to check the wvalidity of this sequential
procedure we treat DSA in another manner that
allows one to include the acceleration and the
synchrotron losses at the same time, rather than
sequentially. Our numerical results show that the
two procedures produce indistinguishable results.
Here we summarise the alternative procedure and
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Figure 1—Effect of multiple DSA and synchrotron losses is illustrated for the
distribution resulting from a single initial injection: 7 = 3-8, p./po = 103, N = 1,

5, 25, 50.

outline an analytic proof that the two procedures
are equivalent.

The alternative method is an adaptation of that
explained by Achterberg (1990). An individual
electron gains A(p) in one cycle time t., where a
cycle involves crossing the shock from upstream to
downstream and back to upstream again. There is a
probability P(p) of an electron escaping downstream
in each cycle. For a highly relativistic particle, the
theory implies

R

where wuq is the shock speed; t. depends on the
mean free paths of the electrons in the upstream
and downstream regions. Then the distribution of
electrons escaping downstream is

P(p) (" P
f(p)mpgA(p) exp[ /po dp A(p/):|v (5)

where the normalisation of f(p) depends on an
arbitrary injection rate. The integral in (5) with
(4) is elementary, and the result reproduces (1) for
an initial distribution proportional to 6(p — po).

Synchrotron losses may be included in (4) and (5)
by including the synchrotron losses in the calculation
of A(p) in each cycle. The average acceleration
rate over one cycle, dp/dt = A(p)/t. = Cp, is then
modified to

dp/dt = Cp — Ap?, (6)

where the additional term describes the synchrotron
losses.  The synchrotron cutoff corresponds to

pe = C/A, and no electron can be accelerated to
beyond this cutoff [f(p) =0 for p > C/A]. The
resulting distribution of electrons then follows from
(5) with A(p) reinterpreted in this way, that is,
with the replacement A(p) — A(p) — Ap?t., where
Ap?t, is the synchrotron loss in one cycle. The
integral can be performed analytically and the result
is the same as that obtained using the sequential
procedure (3). The effective synchrotron loss time,
At in (3), found by equating the two results, is
cr—1

At=— ——t.. (7)
up  3r

Thus, except for very weak shocks (r = 1), (7)
implies At > t. and the change over any one cycle
is small, justifying our use of the discrete change
in one cycle to determine a continuous change over
many cycles.

The foregoing proof of equivalence of the two
treatments of DSA and synchrotron losses applies
for an initial distribution f(p) o< 6(p — po). The
generalisation to an arbitrary initial distribution,
fo(p) say, follows simply by applying the operation
J dpo fo(po). (In effect the solution for an initial
O-function distribution is a Green function for the
general case.) This establishes the equivalence of the
two procedures: the sequential procedure is exact
within the framework of this alternative treatment
of DSA. Thus we are well justified in using the
sequential procedure in our numerical calculations.

4 Results

Our numerical results are illustrated in Figures 1-5.
In these figures the logarithm of the distribution
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Figure 2—Comparison of the distributions with (solid curve) and without (dashed

curve) synchrotron losses for injection only at the initial shock:
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Figure 3—Cumulative effect after many shocks with injection

distribution for p > po: 7 = 3-8, pc/po = 103, N =1, 10, 30, 50.

function is plotted as a function of log(p/po), so that
a power law distribution corresponds to a straight
line. The absolute values of f(p) and of p are
unimportant. The synchrotron cutoff momentum
pe is a free parameter and is chosen to be either
three (p./po = 10%) or six (p./po = 10°) orders of
magnitude above the injection momentum. All the
shocks have the same strength, specified by the
value of r, and the calculations are performed both
for strong shocks with » = 3-8 and for shocks with
r = 2-0. The adiabatic decompression after each
shock moves the curve to the left [by —(logr)/3],
without changing its shape, so that after N shocks
the lowest energy particle in the distribution has
logp = —N(logr)/3.

In Figure 1 the evolution of a single distribution
injected at the first shock is shown after 1, 5, 25 and

r=3-8,
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at each shock; (a) the distribution, (b) the slope of the

50 shocks, all with r = 3-8 and with the synchrotron
cutoff p. = 103py. The sharply-peaked distribution
is immediately after the first shock, before adiabatic
decompression, and the other curves peaking to
the left of the first are after 5, 25 and 50 shocks,
respectively. The formation of a plateau (the nearly
horizontal portion of the curve) is evident after 50
shocks.

In Figure 2 the distribution shown in Figure 1
for N =50 is compared for the same case without
synchrotron losses. In effect all the particles that
would be above the synchrotron cutoff in the
absence of synchrotron losses (dashed curve) appear
in a hump just below the synchrotron cutoff when
synchrotron losses are included (solid curve). This
hump is a manifestation of the ‘pile up’ effect due to
synchrotron losses, as discussed in Section 5 below.
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Figure 4—As for Figure 3, except for r =2-0 and N =1, 20, 80, 200.

In the theory of DSA it is usually assumed that
there is injection at every shock. Hence the cases
shown in Figures 1 and 2, where there is only a single
initial injection with this distribution subjected to
many shocks, is not realistic in practice. One expects
the distribution after N shocks to consist of the
sum over the distribution injected at the first shock
subjected to N shocks, the distribution injected at
the second shock subjected to N — 1 shocks, and
so on to the distribution injected at the Nth shock
subjected to only one shock. This sum is performed
in evaluating the distributions shown in Figure 3.
In Figure 3a the curves correspond to the sums after
N =1, 10, 30, 50, with the innermost distribution
being for N =1 (which is the same as the N =1
case in Figure 1) and the outermost curves being for
N =50. An inflection develops in the distribution
just below the synchrotron cutoff. To illustrate
this more clearly, the slopes of the distributions are
plotted in Figure 3b. The lowermost curve is for
N =1; at low p 2 py it shows a power law with
index b = 4-07, corresponding to b = 3r/(r —1) with
r = 3-8, cf. (1); the slope steepens as the synchrotron
cutoff is approached. As N is increased the slope
decreases monotonically and approaches b = 3 at low
P 2 Po, in accord with theoretical predictions (White
1985; Achterberg 1990; Schneider 1993; Melrose &
Pope 1993; Pope & Melrose 1994). Nearer the
synchrotron cutoff, after about 10 shocks, a peak in
the slope starts to develop and becomes increasingly
prominent with increasing N. This peak may be
attributed to the contribution from the plateau-like
portions of the distributions resulting from injection
at the earliest shocks.

In order to illustrate that the effects shown in
Figure 3 are not unique to very strong shocks,
we performed calculations for weaker shocks with
r =2-0. The results are shown in Figure 4. As in
Figure 3, an inflection in the distribution develops
just below the synchrotron cutoff after many shocks.

The development of this feature is slower for weaker
shocks, and more shocks (up to N = 200) are
included in Figure 4 than in Figure 3 (up to
N = 50). The slope of the distribution for N =1 is
b=16-0 at p 2 po, corresponding to b= 3r/(r — 1)
with 7 = 2-0, and it increases towards b = 3 with
increasing N. The peak in the slope (Figure 4b) just
below the synchrotron cutoff is somewhat broader,
with the peak at a somewhat lower momentum,
than for the stronger shocks. We also performed
calculations for 100 shocks of random strength, with
r chosen as a random variable between 1-5 and
4-0, and the results are similar to those shown in
Figures 2-4.

To study the effect of increasing the range between
the injection and the synchrotron cutoff, we repeated
the calculations in Figure 3 for p./py = 10°. The
results are plotted in Figure 5. Compared with
Figure 3, Figure 5 shows that the portion of the
distribution with b ~ 3 (corresponding to a flat
synchrotron spectrum) extends over most of the
wider range py < p < p., with the peak in the slope
remaining essentially unchanged at p ~ 0-1p,.

5 Interpretation

The foregoing results show four notable effects of
synchrotron losses on multiple DSA: (a) it provides a
high-p synchrotron cutoff (denoted p.) beyond which
no particle can be accelerated by DSA; (b) for a single
initial injection, a plateau distribution, f(p) = const.,
develops at p < 0-1p.; (c¢) the cumulative effect of
injection at every shock leads to a distribution
f(p) x p~3 for p < p.; and (d) the distribution in
(c) has a slope that rises gradually to a peak (with
bmin ~ 2 at p ~0-1p. in Figure 3).

In the following discussion an important (and
long-known) effect of synchrotron losses plays a
central role: synchrotron losses tend to steepen a
distribution with b > 4 and to cause a turn-up in
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Figure 5—As for Figure 3, except for p./po = 106.
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Figure 6—Effect of synchrotron losses on initial power law distributions with
b =3 (upper), b =4 (middle) and b =5 (lower).

a distribution with b < 4. This is illustrated in
Figure 6 where the initial distribution is a power law
(ox p~?) that extends to p = co. After a time ¢ the
particles initially with p = oo have p = p. = 1/At,
which is the synchrotron cutoff in this case. A
distribution with b > 4 initially becomes steeper
(both with increasing p and increasing t) with
f(p) = 0 for p — p.. The distribution with b =4
does not change in shape and cuts off abruptly at
p = pe. A distributions with b < 4 initially develops
a pile up with f(p) — oo for p — p..

The formation of a plateau distribution for a
single initial injection subjected to many shocks can
be understood in terms of two effects. One effect is
that multiple DSA tends to flatten the distribution

towards the asymptotic distribution f(p) o p~3.

Thus, although DSA at a single shock (in a plasma
with ratio of specific heats 5/3) cannot produce a
distribution flatter than b =4, and b =4 only for
the strongest possible shock with r = 4, multiple
DSA can produce a distribution with b < 4. The
other effect is that once a distribution with b < 4
forms, synchrotron losses tend to cause electrons
to pile up just below the synchrotron cutoff, cf.
Figure 6. Together these effects account for the
distributions in Figures 3-5, with b close to 3 well
below p. and a peak in the slope just below the
cutoff at p..

Schlickeiser (1984) showed that the combination
of (second-order) Fermi acceleration and synchrotron
losses causes a ‘pile up’ just below synchrotron cutoff,
and our result is related to Schlickeiser’s result. The
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combination of DSA and decompression should lead
to a Fermi-like acceleration mechanism, in the sense
that the combination may be described by a diffusion
equation in momentum space. Hence, the asymptotic
solution for multiple DSA should approach the
asymptotic solution for Fermi acceleration: for
constant injection at p = po this is a plateau (b = 0)
for p < pg and is b = 3 for p > pg. The synchrotron
losses provide a high-p barrier that prevents particles
from diffusing to very high p, and this may be
regarded as a reflecting boundary in momentum
space. This reflection acts like a source of particles
at the synchrotron cutoff so that one expects the
asymptotic spectrum to approach a plateau just
below the cutoff. The tendency to form a plateau
distribution for a single initial injection, cf. Figure 1,
is a manifestation of this effect. When expressed in
terms of the energy spectrum of the electrons, N (e),
with € &~ pc for highly relativistic particles, and hence

N(e)de = 4n f(p)p*dp, (®)

a plateau momentum distribution implies an energy
spectrum N(g) o< €2. Thus our results show that
DSA combined with synchrotron losses produces a
pile up similar to that found by Schlickeiser (1984) for
Fermi acceleration combined with synchrotron losses.
However, in the more realistic case where there is
injection at each shock (which would be simulated
by constant injection in Fermi acceleration) the
asymptotic distribution is f(p) oc p~3 or N(g) x 71,
becoming somewhat flatter just below the synchrotron
cutoff. This portion of the distribution with b < 3
implies that it is possible in principle for the
model to account for weakly inverted spectra
[ = (b—3)/2<0], but only at relatively high
frequencies, corresponding to emission by electrons
with momenta just below p. (around 0-1p. according
to Figure 3).

6 Conclusions

We present the results of numerical calculations that
show the effect of synchrotron losses on diffusive shock
acceleration (followed by adiabatic decompression)
at multiple shocks. Our main results can be
summarised as follows.

e Synchrotron losses are most important, during the
acceleration process, when the electrons are in the
compressed-B region just downstream from the
shock. Synchrotron losses imply a synchrotron
cutoff, p = p., to the distribution of accelerated
particles; DSA cannot cause any particle to be
accelerated to p > p..

e It is shown analytically that two procedures for
treating the combination of synchrotron losses and
DSA are equivalent. Inone treatment, the effects of
synchrotron losses are included in the momentum
change in each cycle of a particle crossing the
shock from upstream to downstream and back.
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In the other procedure, used in our numerical
calculations, synchrotron losses are first neglected
to find the distribution of electrons resulting from
DSA alone, and then the synchrotron losses are
allowed to modify this distribution. The two
procedures are equivalent provided that the time
for which the synchrotron losses are allowed to
operate in the latter ‘sequential’ procedure is
identified as the time in equation (7).

e Just below the synchrotron cutoff, the distribution
of particles injected at an initial shock and
subjected to DSA at many shocks without further
injection tends to form a plateau distribution
[f(p) independent of p|, which corresponds to an
energy spectrum N(e) o< £2.

e The distribution below the synchrotron cutoff due
to the cumulative effect of injection at every
shock tends to a distribution f(p) oc p~® with
b~ 3 at p < p., with the distribution becoming
somewhat flatter such that the slope has a peak
(with b ~ 2) just below p. (at ~ 0-1p, for strong
shocks). Such a distribution, if the source were
homogeneous (which it is not due to the shocks),
would correspond to a flat synchrotron spectrum
[@ = (b—3)/2 =~ 0] becoming a weakly inverted
spectrum (o ~ —0-5) with a peak just below a
sharp cutoff due to synchrotron losses.

We conclude that it is possible in principle for
multiple DSA coupled with synchrotron losses to
account for a flat synchrotron spectrum. This may be
a viable explanation for the flat synchrotron spectra
observed in some Galactic Centre sources. A more
detailed investigation of this possibility is warranted.
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