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An Analytic Flow Solution for YSO Jets

Kurt Liffman

Advanced Fluid Dynamics Laboratory, CSIRO/BCE, PO Box 56,
Highett, Vic. 3190, Australia

Kurt.Liffman@dbce.csiro.au

Received 1997 December 29, accepted 1998 April 20

Abstract: We present an analytic solution for a jet flow from a young stellar object
(YSO). This solution allows us to compute the speed, density, and magnetic field
strength of the flow, but it is only true if YSO jet flows are powered by toroidal
magnetic fields. We illustrate how the balance between centrifugal force and magnetic
pressure provides the converging/diverging nozzle shape required to accelerate the
flow.
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1 The Magnetic Nozzle

Consider the behaviour of a perfect gas of infinite
conductivity flowing with a velocity v through a
channel of varying cross-sectional area A (Figure 1).
The channel has a constant width w, a varying
height l, and a magnetic field applied in the z
direction.

To ensure that the magnetic field is always
perpendicular to the side walls, it is assumed that
the sides parallel to the x− y plane are composed
of a material with infinite permeability. Such a
magnetic field can ‘stiffen’ the gas, so that the signal
velocity of the medium is now the fast magnetosonic
speed. To exploit this property, and to drive the
flow, an electric field is applied in the ŷ direction.

Our fundamental equations are the steady-state
forms of Faraday’s law, Ampere’s law, plus the
isentropic magnetohydrodynamic (MHD) equations
and the ‘frozen-in-flux’ approximation.

By examining the suitable one dimensional forms
of these equations, one can produce (Morozov &
Solov’ev 1980; Liffman & Siora 1997) a nozzle
equation with the Hugoniot form:(
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where u is the x component of v , CF is the
fast magnetosonic speed (=

√
C2
S + C2

A), CS the
sound speed (=

√
γp/ρ), CA the Alfvén speed

(=
√
B2/(µ0ρ)), B the magnetic field strength, µ0

the permeability of free space, ρ the density, p the
pressure, and γ the ratio of specific heats.

If we wish to accelerate the flow (du/dx > 0)
then u2 < C2

F ⇒ (dA/dx) < 0, i.e. when the flow
starts, the nozzle has to converge. Similarly,
u2 > C2

F ⇒ (dA/dx) > 0, so once we are past the
critical point in the flow the nozzle must diverge.

Clearly, the critical speed is the magnetosonic speed
and, given that the Alfvén speed has the value
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ρ

) 1
2

km s−1 ,

(2)

the potential for high speed flow is obvious.
Of course, the frozen-in-flux behaviour of magnetic

fields implies that the plasma will be fixed to the
magnetic field, so even though the signal velocity
of the medium is the fast magnetosonic speed the
actual flow speed would—at first glance—be equal to
zero. This intransigence can be overcome however,
by applying an electric field perpendicular to the
magnetic field such that the E×B vector is pointing
in the flow direction. The plasma will then move
via the mechanism of E ×B drift.

Further manipulation of the MHD equations
(Morozov & Solov’ev 1980; Contopoulos 1995;
Liffman & Siora 1997) gives the flow constants

N1 ≡ ρuA , (3)

N2 ≡ BuA , (4)

with an MHD-Bernoulli equation

u2

2
+

C2
S

γ − 1
+ C2

A ≡ constant . (5)

In the ‘cold’ plasma limit (CA À CS) one can
use the MHD-Bernoulli equation (see Liffman and
Siora 1997) to show that

uE ≈
√

3CAT , (6)
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Figure 1—Channel flow with a magnetic field between high
permeability pole pieces. The flow is driven by E×B drift.

where uE is the exit speed of the nozzle and CAT
is the Alfvén speed at the throat of the nozzle.

One can also show

ρT = 2
3ρR and BT = 2

3BR , (7)

where ρT and ρR are the gas densities at the
throat and entrance (or reservoir) of the nozzle,
respectively. Similarly, BT and BR refer to the
magnetic field strength at the throat and entrance
of the nozzle. So, one can have a dramatic increase
in the flow speed from u = 0 in the reservoir, to
u =

√
CST

2 + CAT
2 at the throat, but suffer only

a 1
3 decrease in the magnetic field strength and gas

density. This raises the possibility that such flows
may be quite efficient in ejecting dust and, possibly,
larger macroscopic material.

But what, if anything, does this have to do with
YSO jets?
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Figure 2—Interaction of the dipole magnetic field from a
YSO with its accretion disk.

2 YSO Jets

Consider a YSO where the poloidal dipole field of
the YSO has been wrapped up into a toroidal field
Bφ in the accretion disk surrounding the young
stellar object (Figure 2). The sign of the field
changes as one passes through the disk. This

magnetic structure suggests that the midplane of
the inner accretion disk can become a zone of
magnetic reconnection (Freeman 1977; Grosso et al.
1997). As the dipole field sweeps across the disk it
generates a radial Freeman current in the disk. The
Lorentz force generated from the Freeman current
tends to compress the disk. The electric field in
the disk’s corona interacts with the toroidal field
to drive the flow via E ×B drift.

To put this scenario on a slightly more quantitative
basis, and to show how the toroidal field is created,
we assume that the magnetic field rotates rigidly
with the star, so at the disk surface, the velocity
of the object’s B field is

VB = rΩ∗ , (8)

where r is the distance, in the plane of the disk,
from the centre of the star and Ω∗ is the angular
rotational frequency of the star. If the disk rotates
with a Keplerian velocity, then the disk surface has
an angular velocity

VK =

√
GM∗
r

= r

√
GM∗
r3 = rΩK , (9)

where G is the gravitational constant, and M∗ is
the mass of the central object.

The magnetic field velocity relative to the disk
is simply

VBK = VB − VK = r(Ω∗ − ΩK) . (10)

So when VBK = 0, we have reached the corotation
radius rc, where the angular velocity of the stellar
magnetic field matches the Keplerian velocity of the
disk, and rc has the form

rc =
[
GM∗
Ω∗2

] 1
3

= 0 ·04
[(

M∗
M¯

)(
T∗

3 days

)2] 1
3

AU , (11)

with G being the gravitational constant, M∗ the
mass of the star and T∗ the rotation period of
the star, where we have taken the typical rotation
period of a YSO as our normalisation value.

For r 6= rc the magnetic field will induce an
electric field E, in the disk, of the form

E = −V BK ×Bz(r) , (12)

where Bz(r) is the strength of the star’s magnetic
field, in the plane of the disk, at distance r from
the centre of the object.

Combining equations (10) and (12) gives

E = −r (Ω∗ − ΩK)Bz(r) r̂ . (13)

For a disk with finite conductivity σ, the induced
electric field drives a Freeman current in the disk
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with a current density of the form

j = σE = −σr(Ω∗ − ΩK)Bz(r) r̂ . (14)

This current, in turn, induces a toroidal field, the
form of which can be deduced from Ampere’s Law

∇×B = µ0j , (15)

where µ0 is the permeability of free space.
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Figure 3—Current density and toroidal field in the top half
of the disk.

We integrate equation (15) over the section of
cylindrical surface shown in Figure 3. The bottom
of this surface lies on the midplane of the accretion
disk, where the toroidal field Bφ has zero magnitude.
The top line lies at a height z above the midplane
of the disk, where the toroidal field has a non-zero
magnitude. The disk current flows in a direction
perpendicular to the integration surface, so the
magnitude of the toroidal field is simply:

Bφ(r, z) = µ0σrz(Ω∗ − ΩK)Bz(r) . (16)

Equations (14) and (16) were first obtained by
Bardou & Heyvaerts (1996) (see also Bardou 1997).
These authors deduced these equations by analysing
the electric circuit made up of the disk, star and
the magnetic fields. We have given an alternative
derivation to illustrate the veracity of these results.

With our toroidal field in place, our hypothetical
flow scenario is shown in Figure 4. The wind
arises from the toroidal magnetic field embedded in

the disk, and expands in a roughly conical shape.
Our domain of investigation is a flow-tube with a
variable thickness ∆ and initial radius r0, where the
surface of this tube is constituted from neighbouring
streamlines.
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Figure 4—The jet flow equation is derived for a thin,
approximately, conical sheet, which is embedded within the
jet flow.

For a flow tube of fixed average radius and
variable thickness, one can show (Liffman & Siora
1997) that(

v2
z

C2
F

− 1
)

1
vz

dvz

dz
=

1
∆
d∆
dz
− GM

C2
F

z

[r2 + z2] 3
2
,

(17)

where G is the gravitational constant and M is
the mass of the star. We concentrate on the case
z ¿ r ≈ r0 and CF ≈ Vkep, so equation (13) has
the simple form(

v2
z

C2
F

− 1
)

1
vz

dvz

dz
=

1
∆
d∆
dz

, (18)

which is again the MHD nozzle expression, equa-
tion (1). So, the results for the one-dimensional
flow hold for this astrophysical case. Note that the
Alfvén speed at the throat is CAT ≈ CF ≈ VKep
and from (6) the exhaust velocity for the jet is
simply

(a) (b)

Figure 5—(a) Width of the nozzle ∆∗ in terms of the flow speed u∗. (b) Gas density ρ∗ and
magnetic field strength B∗ in terms of the flow speed.
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vz ≈
√

3GM
r0

. (19)

For a magnetically confined plasma one can show
(see the Appendix) that γ = 2, in which case
equations (18) and (5) integrate to an analytic flow
solution:

u∗
(

3
2 −

u∗2

2

)
=

1
∆∗

, (20)

where we have replaced vz by u, with u∗ = u/CFT
and ∆∗ = ∆/∆T , and where CFT and ∆T are,
respectively, the values of CF and ∆ at the throat.
This equation is also true in the cold plasma limit
(CA À CS) (see Schoenberg et al. 1991).

In Figure 5a we show the shape of the nozzle
as given by equation (20). At the start of the flow
u∗ = 0, which gives ∆∗ = ∞. An infinitely wide
nozzle is clearly unphysical, so we can expect that
the initial value of u∗ will be greater than zero in a
real jet, i.e. gas has to be injected into the magnetic
nozzle for it to work. At the throat u∗ = 1 and
∆∗ = 1, as expected. Finally, at the exit, u∗ →

√
3

⇒ ∆∗ →∞, i.e. to obtain the maximum possible jet
speed, we again require the nozzle to have infinite
width. Because this is impossible, we should expect
that a real jet will have a normalised exit speed
somewhere between 1 and

√
3.

From equations (3) and (4) we have

ρ∗ =
1

u∗∆∗
= B∗ , (21)

C∗2A = ρ∗ = C∗2S , (22)

where ρ∗, B∗, C∗A and C∗S are the values of ρ, B,
CA and CS normalised by their values at the throat
of the nozzle.

At the exit of an ideal nozzle, ∆∗ → ∞ ⇒ ρ∗,
B∗, C∗A and C∗S → 0. The behaviour of ρ∗ and B∗

is shown in Figure 5b. The magnetic field and gas
density start with an initial normalised value of 1 ·5.
The values of ρ∗ and B∗ decrease to a value of 1
at the throat of the nozzle and to a value of 0 at
the end of the nozzle. Thus, an ideal MHD nozzle
will produce a gas flow with a very small magnetic
field and a very low gas density. This result calls
into question the popular idea that toroidal fields
collimate jet flows, since we may produce a jet with
little or no magnetic field. We also note that a
nearly ‘ideal’ YSO jet may be difficult to observe,
because the low density of the exhaust gas may
cause the jet to fall below detection limits.

In recent years, some authors have made the
suggestion that dust and small silicaceous spheres
may be ejected by YSO jets (e.g. Liffman & Brown

1996). As a first step to investigate the plausibility
of such a hypothesis, we take a macroscopic test
particle, e.g. a small silicate sphere, and place the
test particle into the flow at different places along
the nozzle. In this way, we can map out the initial
drag force experienced by a macroscopic particle
that is simply dropped into the flow at various
points along the nozzle.

Figure 6—The normalised drag force on a macroscopic
particle placed in the MHD nozzle flow.

The drag force experienced by our test particle
is given by

FD =
CD

2
ρu2A , (23)

where CD is the drag coefficient and A is the
cross-sectional area of the test particle. If we divide
the value of FD by its value at the throat of the
nozzle FDT , we obtain the normalised drag force
F ∗D which [using equations (20) and (21)] has the
form

F ∗D = ρ∗u∗2 = u∗2
(

3
2 −

u∗2

2

)
, (24)

where we have assumed that CD/CDT = 1. From
equation (24), F ∗D obtains a maximum value of 9/8
when u∗ =

√
3/2. The behaviour of F ∗D is shown

in Figure 6, where we see, as expected, that the
maximum drag occurs for u∗ > 1. Since the gas
speed at the throat of the nozzle is approximately
the Keplerian speed, it is possible that a particle
carried by the flow may reach escape speed and be
ejected from the YSO system.

In the discussion so far, we have explored some
of the properties of the MHD nozzle flow, but what
produces the nozzle in the first place? We believe
the nozzle width ∆ is primarily determined by the
balance between the centrifugal force of the gas
in the disk and the magnetic pressure gradient in
the toroidal field Bφ. To see how this could arise,
we consider the steady state form of the MHD
momentum equation:

ρ(v ·∇)v = −∇p+ ρg + j ×B , (25)
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where p is the pressure and g the acceleration due to
gravity. In cylindrical coordinates, the r component
of equation (25) is simply

ρ
v2
φ

r
=
∂p

∂r
+
GM∗ρ

r2 +
Bφ

µ0

∂Bφ

∂r
. (26)

From Liffman & Siora (1997), we know that

vφ ≈
√
GM∗r0

r
, (27)

where r0 is the initial value of r for a parcel of
gas that starts its journey from the midplane of
the accretion disk. Sample calculations suggest that
∂p/∂r is small relative to the other terms, so we
neglect this term. The magnitude of Bφ is given
by equation (16), except we now have

Bφ(r, z) = µ0σrf(z)(Ω∗ − ΩK)Bz(r) , (28)

where

f(z) =
{
z if 0 ≤ z < H ;
z −H − l if H ≤ z ≤ H + l .

(29)

We are required to modulate Bφ by (29), because
in the disk, Bφ ∝ z. Above the disk, however,
we have a perfectly conducting corona and so the
radial current that generates Bφ in the finitely
conducting disk cannot do the same in the corona.
Thus, we should expect Bφ to decrease as some
function of z. In this purely illustrative example,
we assume that Bφ decreases linearly with z and
disappears completely when we reach z = H + l.
In the illustrative example that we give below, we
have set l = H.

We can now differentiate (28) with respect to r
[assuming Bz(r) ∝ 1/r3] and obtain

∂Bφ(r, z)
r

= µ0σf(z)[3
2ΩK − 2(Ω∗ − ΩK)]Bz(r) .

(30)

From (28) and (30), we see that the toroidal
field starts its wind-up at the corotation radius rc,
and the magnitude of Bφ increases with distance
from the star until it reaches a certain distance
rmax. The exact value of rmax is dependent on
the r dependence of Bz(r), but we have assumed a
stellar dipole field [i.e. Bz(r) ∝ 1/r3] and so, from
(30), rmax has the form

rmax = (7
4 ) 2

3

(
GM

Ω2
∗

) 1
3

= 0 ·058
(
M

M¯

) 1
3

×
(

T∗
3 days

) 2
3

AU . (31)

Between rc and rmax the magnetic pressure
gradient is pointing towards the star. If an element
of gas, located in this region, moves away from
the central (z = 0) plane of the disk, initially it
feels no magnetic force, because the central plane
is a magnetic reconnection region and will have no
toroidal field. However, as the particle approaches
the surface of the disk, it will feel the magnetic force
from the gradient in the toroidal field and move
inwards towards the star until the centrifugal force
balances the magnetic and gravitational forces.

Figure 7—Path of a gas particle in the jet flow. Here z is
in units of ‘magnetic scale height’ (H ), where z ¿ r. Two
elements of gas are released from the central plane of the
disk (z = 0) at distances of 0 ·042 and 0 ·057 AU from the
star. Magnetic pressure from the toroidal field causes these
gas elements to move in towards the star. The toroidal field
decreases in magnitude for z > H allowing the gas elements
to return to their initial r positions, thereby producing the
jet nozzle.

A gas element that initially has r ≈ rc will move
only slightly towards the star, since in the near
neighbourhood of the corotation orbit, Bφ ≈ 0. A
gas element with r ≈ rmax, will have a Bφ near its
maximum value and the motion of the gas element
will be perturbed significantly towards the star.
Above the plane of the disk, Bφ decreases with
distance along the nozzle, allowing the nozzle to
expand. This flow property is shown in Figure 7,
illustrating the formation of the nozzle. We obtained
Figure 7 by finding the values of r such that (26)
was satisfied. The parameter values used in this
simulation were, H = 0 ·0001 AU, σ = 1000 S, stellar
radius r∗ = 0 ·00928 AU, and Bz(r∗) = 0 ·01 T.

As is well known, toroidal magnetic fields are
intrinsically unstable. This would tend to limit
the applicability of toroidal fields as a driving
mechanism for YSO jet flows. However, a simple
analysis suggests that the ram pressure of the jet
may ensure the stability of the toroidal magnetic
fields (Liffman & Siora 1997).
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Appendix: A Magnetically Confined Gas ⇒ γ = 2

B
Figure 8—Possible paths for a charged particle near a
magnetic field.

A charged particle in the presence of a magnetic
field line has only two degrees of freedom (see
Figure 8). It can gyrate in a circular orbit around
the field line and/or it can move along the field line.
Typically, one has 1

2kBT of energy per degree of
freedom, and this implies that the internal energy
u of such a magnetic gas is simply

u = nkBT , (32)

where n is the number density of the plasma, kB
is Boltzmann’s constant and T is the temperature
in Kelvin. For a classical ideal gas, the pressure of
the gas is

p = nkBT = (γ − 1)u . (33)

So, γ is equal to 2.


