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THE THEORY OF SOME GENETICAL EFFECTS OF

POPULATION SUBDIVISION

By P. A. P. MORAN*

[Manu8cript received September 26, 1958]

Summary

The genetical effects of the subdivision of a population into partially isolated
subgroups are considered in two part.icular cases. In the first a probability model
is studied in which the subpopulations are of finite size with migration between them.
In the absence of selection the asymptotic rate of progress to homozygosity is
shown to be very little affected by the subdivision. In the second case a deter.
ministic model is studied in which there are two subpopulations in which selective
forces are equal and opposite. A stable dimorphism is then shown to exist if there
is any small amount of intermigration.

I. INTRODUCTION

The evolutionary implications of the subdivision of a population into groups
which are partly isolated from one another has long been a subject of controversy.
Wright and Fisher have shown that in a completely random mating population
without selection or mutation the probability of the population remaining hetero
zygous with respect to two alleles at a single locus is proportional to At, where t is
measured in generations, and A == I-N(8Nl N 2)- 1. Here N 1 and N 2 are the
numbers of males and females, N == N 1+N 2, the generations are non-overlapping,
and the distribution of the number of offspring per parent is approximately
Poissonian. The theory of this phenomenon is simpler if we consider a population
of N monoecious individuals. If these are diploid the population is completely
defined by the nature of the 2N gametes from which they were formed. The
probability of the population remaining heterozygous is then asymptotically propor
tional to At where A == 1-(2N)-1.

It is known that inbreeding resulting from assortative mating or consan
guinity can alter this rate considerably. If now we consider a population spread
out on a wide geographical area, the conditions of strict random mating can no
longer hold and this will be still more evident in a population divided into subgroups
between which only a limited amount of migration takes place. It is therefore of
some interest to study mathematical models of such subdivided populations.

We could do this for populations of diploid individuals with sexual differen
tiation but the algebra is then so complicated that we confine ourselves to monoecious
populations and thus it is only necessary to consider populations of haploid indivi
duals. This will give a quite adequate idea of the effects of migrations between
subpopulations in more complicated models.
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II. RANDOM ApPROACH TO HOMOZYGOSITY IN A SUBDIVIDED POPULATION

Suppose then that we have H +1 subpopulations each of N haploid individuals.
The total population thus consists of (H+l)N individuals and if there were no
subdivisions the probability of heterozygosity would decrease asymptotically as
{1-[(H+1)NJ-l}t. We suppose, however, that in each subpopulation the next
generation contains K migrants chosen at random from the offspring of each of the
other H populations, together with N -HK offspring from the original subpopulation
itself. We write L == HK for the total number of migrants into each subpopulation.
Then L < N. Each of these migrants is a haploid individual.

In this model we have assumed that .migrants come equally from all the other
subpopulations. A more realistic model would be obtained if we assume that the
subpopulations are distributed geographically over a two-dimensional area, for
example if they were concentrated at the vertices of a rectangular lattice. Migration
would then be permitted only from the nearest neighbouring subpopulations.
Difficulties about the special position of subpopulations on the "edge" of the lattice
area could be obviated by wrapping the lattice around a torus. However, even in
this case the algebra becomes unwieldy. It is therefore necessary to confine ourselves
to the case where each subpopulation receives the same number of migrants from
each of the other subpopulations.

We consider a single locus with two possible alleles, a and A. We suppose
that in generation t the number of a individuals in the ith subpopulation (i==l, ... ,
H+1) is kti so that the number of A individuals is N-kti,. We can then write

t*
kti, == kut + ~ ktij, (1)

j

where keu is the number of a individuals which are descended from k(t-l)t and
ktij the number of migrant a individuals in population i descended from k(t-l)j.

i*

The symbol ~ is used to signify summation over all values of j =F i.
j

The generations are taken as non-overlapping and the offspring from the ith
population are taken to be a or A independently with probabilities kuN-l and
(N -kti)N-l. To calculate the asymptotic rate of progress to homozygosity we
set up recurrence relations between the moments of the variates k at times t and
t+1. For simplicity of notation we write t == O. We then have

E(k1uJ == (N -L)N-1koi,

E(klij) == KN-lkoJ, (i:;6j)

var(k1i i ) == (N -L)N-2koi(N-kOi ) ,

var(k1ij) == (N -L)N-2koj(N-koj).
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These are expectations at time t == 1 conditional on fixed values of the k's
at time t == o. It follows that the klii and the kIij are independent and therefore

i*

var(kIi) == (N-L)N-2k
oi(N-kOi) + L KN-2koj(N-koj),

j

var(L kIi) == N- I L kOi(N-kOi).
i

We now write k t == L k ti . Then
i

E(kl ) = ~ E »« = ~ E{kl ii + ~ kli j}

== N- I L{(N-L)kol + ~ K kOj}
i j

== L kOi

== ko.
Put

2At == L E(kti ) ,
i

i*

s, == ~ L E(kti ktj),
i j

c, == L E(kti ) .
i

Then from above, Gt == Go and is constant. We also have

2 2
E(kI~) == (E kIi) + var(kIi)

=N-
2{(N-L)k

Ol + K~kOjr

+N-
2{(N

-L)kol(N-kOl) + ~ K kOj(N-kOj)}'

Multiplying out and summing over all i we find

Al == N-2{(N -L)2+KL-N}Ao+N-2{2NK-KL-K2}Bo+Co. . ... (2)

Next we have, for i =F j,

E(kli kIj) = N-
2{(N

-L)kol + K ~ k01}{(N-L)koj + K ~ kOm}.

Multiplying out and summing we get
*i

B I == ~ L E(kli kIj)
i j

== N-2{(N -L)2Bo+2(N-L)KHAo+2(N-L)K(H-1)Bo+K2Bo
+2K2(H-1)Bo+K2H(H-1)Ao+K2(H-l)(H-2)Bo}

== N-2{N2_2NK+LK+K2}Bo+N-2{2NL-L2_KL}Ao.

The process may be regarded as a Markov chain in which the state of the
system is determined by the (H+l) variables kti(i==l, ... , H+1) == 0, .... N.
There are exactly two absorbing states for which all the kti are zero, or all equal
to N, and from any other state all states are accessible. The matrix of transition
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probabilities is far too complicated to be written down explicitly but we may
determine the moduli of its three largest roots which we write as AO, AI, and A2.
Clearly AO == Al == 1 and there are no other roots of unit modulus. Starting from
any non-absorbing state the probability of any other non-absorbing state at
generation t will be asymptotically equal to a constant multiple of IA2 It and the
probabilities of the two absorbing states will be approximately of the form
a-f31 A2 It. Thus the expression

T == E ~(kti-tN)2, (3)

will be asymptotically increasing and of the form y-81A21t where 8>0. Thus since
T can be expressed in terms of At and Ct we can find IA2\ by picking out the largest

TABLE 1

VALUES FOR v

H

K

I
1 2 4 8

1 0·8769 0·8953 0·9246 0·9527
2 0·9378 0·9460 0·9612 0·9752
4 0·9688 0·9726 0·9803 0·9878
8 0·9844 0·9862 0·9901 0·9939

16 0·9922 0·9930 0·9950 0·9970
100 0·9988 0·9989 0·9992 0·9994

root of the matrix of coefficients in the set of difference equations expressing
A t+l ' B t+1, and Ct+1 in terms of At, Bi, and Ct.

Writing A == 1-J-LN-l, we have to find the smallest root in J-L of the equation

I/LN-(2NL-L2_KL+N)

12NL-KL-L2

and this becomes, on division by N,

2NK-KL-K2 I
-0

J-LN-(2NK-KL-K2)

-J-L2N-J-L{(K+L)(2N-K-L)+N}+K(2N-K-L) == O. • ... (4)

The total population size is (H+l)N haploid individuals and if there were
no subdivision of the population the largest non unit root would be 1-{(H+1)N}-1
which would govern the asymptotic rate of approach to homozygosity. To estimate
the effect of subdivision on this root we write

A == 1-J-LN-l == 1-v{(H+1)N}-1,

and calculate v as a function of Hand K. As K gets large we expect v to approach
unity. Table 1 gives v for selected values of Hand K, and shows that the effects
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of subdivision on the asymptotic rate of progress to homozygosity is small and
rapidly becomes negligible when K, the number of migrants exchanged between
each subpopulation, increases beyond one or two. In fact, it is easily verified that
for

A = I-v{(H+1)N}-l,

v rapidly tends to unity as H or K increases, for the asymptotic form of equation
(4) is

JL2-JL{2(H+l)K+l}+2K = O.

and the relevant root of this is nearly (H+1)-1 when H or K is large.

These results show that geographical subdivision will have only a very small
affect on the asymptotic rate of drift to homozygosity in small populations between
which there is some small amount of intermigration. This conclusion, however,
is dependent on there being no selective effects. The problem of the effect of selection
on the rate of progress to homozygosity is a very difficult one and has been discussed
for a single population by Wright and Kerr (1954) and by Kimura (1955). These
papers estimate the result of a small selective effect, without dominance, on the
principal root and show that the asymptotic rate of progress to homozygosity is
increased.

III. STABLE POLYMORPHISM IN A SUBDIVIDED POPULATION

The situation is entirely changed if we suppose that the population is divided
into two parts in which selection operates in different directions. To discuss the
theory of a stochastic model of this kind would be a very difficult undertaking.
We shall confine ourselves to considering a deterministic model and show that there
exists a stable state in which both alleles exist, i.e, a stable polymorphism similar
to the well-known case in which the heterozygote has a selective advantage.

Consider two populations within each of which mating is at random so that
we can represent the frequencies of the zygotes aa, Aa, and AA by P~, 2p1q1, qi,
and p~, 2p2q2, q~ respectively. Next suppose that in the first population the relative
reproductive powers of the zygotes are in the ratios (1+m): 1 : (1-m). Similarly
in the second population we suppose they are in the/ratios (1-m) : 1 : (1+m),
i.e, we assume that selection operates equally but in opposite directions. Then
the frequency of gene a in the offspring from the first population will be

(1+m)p~+2p1q1
2 2 '

(1+m)PI +2p1Q1+(I-m)QI

and if m is small this will be equal to PI+mp1Q1. Similarly the a gene frequency
in the second population will be P2-mp2Q2. We now suppose that the next
generation in each subpopulation consists of a fraction (l-k) of descendants of
this population and a fraction k which are descendants of the other population.
In general k will be small but for the following results to hold it is necessary only
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that k«; t. If the values of the frequencies of gene a in the new generation are P~

and P; we then have, supposing m small,

P~ == PI+k(P2-Pl)+(I-k)mplQl-mkp2q2,

P; == P2+ k(Pl -P2) -(I-k)mp2Q2+mkpIQl'

We first consider what values PI, P 2 of PI and P2 will result in a stationary
state, i.e. one for which P~ == PI and P; == P2. Writing l == k-1 we obtain from
the above equations

P 2-Pl+(l-I)mP1Ql-mP2Q2 == 0,

PI -P2-(l-I)mP2Q2+mPIQl == 0,

where Ql == I-PI, Q2 == I-P2.

Adding we see that P1Ql == P 2Q2. Thus we must have PI == P 2 or PI == Q2.
If PI == P 2 we must have (l-2)P1Ql == 0 and so P1Ql == P 2Q2 == 0 so that either
PI == P 2 == 0 or PI = P 2 = 1. Both of these are possible solutions. If PI == Q2
we substitute for P 2 and Q2 in the first equation and find

Pim(2-l)-P1{m(2-l)+2}+1 == 0,

and since l > 2 we see that the root

t+{m(2 -l)}-I_,J{!+m-2(2-l)-2}

is less than zero and so is not relevant. The other root

t+{m(2 -l)}-1+,J{!+m-2(2-l)-2}

lies between t and 1 and results in a stationary solution.

Consider the stability of solution PI == P 2 == o. For PI and P2 small we have
the approximate equations

P~ == Pl(I-k)(I+m)+P2k(I-m),

P; = P1k(I+m)+P2(I-k)(l-m).

These are a pair of linear difference equations and the population will be
stable in the neighbourhood of PI == P2 == 0 if, and only if, the roots of the deter
minantal equation

I

A-(I-k)(I+m)

-k(I+m)

-k(I-m)

A-(I-k)(I-m)
1=0,

are less than unity in absolute value. The roots are

A == (I-k)±~ {k2+m2(I-2k)}.

Since we have assumed k < t the term inside the radical is certainly greater
than k2 and thus one root is greater than I-k+k == 1. The solution PI == P 2 == 0
is therefore unstable. Similarly the solution PI = P 2 == 1 is unstable by symmetry.
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For the third solution we have t < PI == Q2 < 1. Write PI == Q2 == P == I-Q
say, and

PI == P + 81, ql == Q - 81,

P2 == Q + 02, q2 == P - 82,

where 81, 82 are small. Expanding the recurrence relation about the point (P, Q)
we get

8;' == 01(I-k)(1+m(Q-P))+82k(I+m(Q-P)),

,8~ == 81k(I + m (Q- P ))+ 82(I - k )(I + m (Q- P )).

I
A-(I-k)(I+m(Q-P)) k(I+m(Q-P)) I
k(I+m(Q-P)) A-(I-k)(l+m(Q-P))

== A2-2(1-k)(l+m(Q-P))A+(1-2k)(1+m(Q-P))2== 0,

The state (P, Q) will be stable if, and only if, the roots of the determinantal
equation

are less than unity in absolute value.

These roots are

A == l+m(Q-P), (1-2k)(1+m(Q-P)),

and since P > Q and k < i both these roots are less than unity so that a stable
polymorphism exists. This model could be generalized without much difficulty
to a situation in which selection in the two subpopulations is unequal so long as they
are of opposite signs, and similarly the migration intensities could be made unequal.

Levene (1953) has considered a similar model with several subpopulations but
supposes the individuals to leave their niches immediately before breeding thus
forming one large panmictic population whose offspring are later distributed
amongst the different niches.

Thus a deterministic model results in the existence of a stable polymorphism.
If we take into account the fact that the populations are finite, the ultimate fate
of the population is quite different since there are two absorbing states and one of
these. must ultimately be attained. The stable state with 0 < PI < 1 now has
only a quasi-stable character in that there will be a strong tendency for the popu
lation to return to it when disturbed. Thus in the absence of mutation the rate of
approach to homozygosity will be very much slower than that which would occur
if there were no selection. Unfortunately the problem of calculating this rate
appears to be very difficult.

The evolutionary significance of these results is that "drift" to homozygosity
in small populations may be very much slowed down if the population contains
two niches in which selection operates in opposite directions. This will be true even
for two populations between which there is only a small amount of migration.
However, in practice, we are unlikely to have niches which differ in their selective
effects for only a single character and it may well happen that the accumulation
of genetic differences between the two subpopulations finally results in barriers
which reduce and ultimately eliminate cross-breeding.
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