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Summary 

Two models are proposed for the distribution on pasture of infective larvae of 
the gastrointestinal nematode parasites of sheep. These models were developed to 
include as many as possible of the known biological components. Procedures for 
estimating the parameters of the models are outlined and advantages of these models 
over earlier attempts to describe the distribution of infective larvae on pasture are 
briefly discussed. 

r. INTRODUCTION 

In studies on the. population dynamics of gastrointestinal nematode parasitism 
in sheep it is important to obtain some measure of the rate at which the infective 
larvae of these parasites are ingested by the grazing animal. It is likely that the 
rate of larval intake by the host depends largely on the grazing behaviour of the 
sheep, and the distribution and abundance of infective larvae on the pasture. In 
this paper, specific models are developed for the distribution of infective larvae on 
pasture incorporating as many of the known biological components as possible. 

A brief description of the biological processes requiring mathematical treatment 
follows: 

(1) Eggs which are laid by the female parasites in the alimentary tract of the 
host are passed out in the faeces onto the pasture. Under favourable 
environmental conditions, the eggs undergo several stages of development, 
culminating in the appearance of third-stage larvae which are infective 
for the host. The infective third-stage larvae migrate only a small distance 
away from the faecal deposit to adjacent herbage (Dinaburg 1944; Furman 
1944), where they may survive for a limited period. The host becomes 
infected either by penetration of the infective larvae through its skin, or, 
for the great majority of these parasite species, by ingestion of the infective 
larvae with the herbage. 

(2) The rate of development to the third larval stage and the rate of mortality, 
both during development and in the third larval stage, depend on micro­
climatic factors, principally temperature and humidity. 

(3) Observations by Crofton (1954) on fields being grazed by sheep have 
shown that the distribution of faecal deposits is not random, i.e. is not 
described by a Poisson law. He has also showu that sheep. while graziug, 
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move in a more or less well-integrated group) which at any point in time 
occupies an area rarely less than one-sixth and never more than one-third 
of the total pasture area. Assuming that the periods of grazing and 
defaecation are broadly coincident, it is likely that the distribution of 
faeces deposited per unit area of the total pasture area within a unit of 
time will be "overdispersed)) statistically) i.e, the variance of the distribu­
tion will be appreciably greater than the mean (Bliss and Fisher 1953). 

(4) It has been shown by Hunter and Quenouille (1952) that replicate faecal 
worm egg counts (eggs per gram of faeces) from the same sheep followed 
a Poisson series, but that the distribution of egg counts between sheep 
fitted reasonably well to the negative binomial distribution with k",,0·7. 
It is likely, therefore, that the distribution of total egg numbers in faecal 
masses deposited by a flock of sheep in a unit of time will also be over­
dispersed. 

In the following development these biological aspects are important, since we 
require mathematical models to describe the distribution of third-stage larvae on the 
pasture. Thus the distribution of faecal deposits on the pasture, the distribution of 
egg output of the flock at a given point in time, and the rate of mortality of the 
larval stages of the parasite must be considered during construction of the models, 
These points will be emphasized in the next section. 

II. THE DISTRIBUTION 

We consider the situation where a fixed number) S, of sheep are introduced onto 
a pasture of total area A at time t ~ ° and are removed at t ~ t, . The probability 
generating function (p.g.f.) for the distribution of faecal deposits for the ith sheep is 
assumed to be of the form 

{pj(1-q8)}"", (I) 

where q ~ 1-p and i ~ I, 2, ... , S. The expression (I) specifies a negative binomial 
distribution with parameters p and ait. Now, if the effects of sheep on the total 
distribution of faecal deposits are stochastically additive and independent, then 
the p.g.f. for the S sheep may be written as 

with 

{pj(l-qs)}a', 

S 
a = ~ ai' 

i=l 

(2) 

Now let the time segment [0, tj be partitioned into n intervals of equal length 
tn-1 and label the points of subdivision to) t1) t2, .• "tn- Then, because of the infinite 
divisibility property of (2), the p.g.f. of total faecal deposits for any of the subintervals 
is given by 

{pj(l_qs)}at{n. (3) 
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Furthermore, consider the p.g.f. of the number, N, of eggs dropped onto the 
pasture during the ith time interval [ti_i, tiJ. We denote the average number of eggs 
per faecal deposit at some time tiE[ti_l' ti ] by A(ti ) and assume that the distribution of 
the numbers of such eggs follows a Poisson law with parameter A(ti ), which is a 
continuous function of time. (Initially, ,ve assume, contrary to (4) of the Introduction, 
that A(ti) is the same for all sheep. Subsequently, this restriction will be removed.) 
Moreover, if the probability that a given egg is in the infective larval stage at time t 
after being dropped is denoted by the continuous function 1(t), then it is easily 
shown that at time t, the distribution of larvae developing from eggs deposited 
during the ith subinterval is again Poisson with parameter 

f'(t, t i ) = A(ti ) 1(t-ti)' 

Thus the p.g.f. for the number of larvae surviving at time t from the ith interval is 
given approximately by 

( -latin pj[l-q.exp{ -f'(t, tJ(1-8)}] . (4) 

Therefore, for the p.g.£. of the total number of larvae on the pasture at time t we 
have also approximately, 

n 1 )atln Yn(t,8) = II pj[l-q.exp{ -f'(t, l,)(l-s)}] 
,~, 

(5) 

The larger n becomes, the smaller is the interval width tn-1 and the closer does 
gn(t, s) approach to the conceptual p.g.f. with continuous time increments. 

We therefore define the limiting p.g.f. as follows: 

y(t,8) = lim Yn(t,8) 
n~ro 

= lim exp1atn-1 .~ In[Pj(l-q.eXP{-f'(t,li)(l-S)})]) 
n~<:o t t=l 

= exp{atlnp-af: In[l-q.exp{-f'(t, X)(1-8)}]dX) (6a) 

by the continuity of eY and the definition of the Riemann integral. 

In the above derivation it was implicitly assumed that t-<:;t1 . However, ift>t1 

we consider the interval [0, t1] and apply entirely analogous reasoning to that used 
above. Thus, for t >t1 

y(t., 8) = exp{ at,lnp-a f: In[ l-q.exp{ -f'(t, x)(l-s)} ]dX). (6b) 
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Since '\(t) and f(t) are continuous functions of t, the integral f: [,\(x)f(t-x)J"dx, 

a;;>O, exists, and if the expressions (6a) and (6b) are suitably differentiated with 
respect to 8, it is found that 

Es(N) = aqp- 1( '\(x)f(t-x) dx t<;t, 

f
t
' 

= aqp-' 0 '\(x) f(t-x) dx t;;>t, (7) 

Vs(N) = aqp- 2 f: ['\(x)f(t-x)]2dx+Es(N) t<tl 

f
t
' 

= aqp-2 0 ['\(x)f(t-x)]2dx+Es(N) t>t, 

where the subscript S is used to emphasize that these values refer to the applicati9n 
of S sheep to the area. 

It is important to notice that (6a) and (6b) are not only sheep additive, but 
space additive as well. Although these formulae refer to a particular area of size A, 
they may be considered as the convolution of the effects of S sheep on L areas each 
of size AIL. In this case, each subplot has a negative binomial distribution with 
parameters p and atl L. These features emphasize the flexibility of the model. 

It is clear from (7) that if the sheep are left on pasture indefinitely, then the 
following theoretical equilibrium is reached at t = 00, 

e(N) = aqp-' lim ft '\(x) f(t-x)dx. 
t_co 0 

In order to obtain bounds for e(N), notice that 

aqp-'inf[,\(x)]f
W 

f(x)dx<;e(N) <;aqp-'suP['\(X)]f W f(x)dx, 
x 0 x 0 

and therefore 

e(N) = '\(i) [ f(x)dx , i<[O,oo J. 

However, when the sheep are removed at t = tl , we obtain 

f
t
' e(N) = aqp-l lim '\(x)f(t-x)dx 

t_co 0 

f
t
' 

= aqp-' '\(x)[ lim f(t-x)Jdx 
o t_co 

=0, 

as required, sincef(oo) = 0. 
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If, 'in the above model, sheep additivity does not seem to be a valid assumption, 
then the model can be applied to varying flock sizes and different a values estimated 
for each flock size. This, in fact, would allow the nul! hypothesis of sheep additivity 
to be investigated, siuce under this hypothesis the a's should be proportional to 
the flock sizes. 

However, as mentioned in the Introduction, it may not be safe to assume a 
constant .\(t) for each sheep as was implicitly done in the above derivations. If this 
is so, and sheep additivity can be assumed, then each sheep must be given its own 
g(t, 8) and the parameters aj and I\(t), j = 1,2, ... , S, must be separately estimated 
and the average number of larvae on the pasture would then be given by 

S ft 
Es(N) = qp-' ;~, a, o.\;(x)f(t-x)dx. (8) 

Some investigation would be necessary in order to show whether or not expressions (7) 
are satisfactory approximations. 

If the iuvestigator is seriously concerned about both the assumptions of sheep 
additivity and constant .\ (t), then the whole model may have to be changed. One 
way of doing this is to assume that the numbers of larvae at time t which develop from 
eggs deposited on the pasture dnriug the ith time interval has p.g.f. 

{u/l-v[l-f(t-i,)(I-s)]}k(td, (9) 

where k(t) is an arbitrary function of time andf(t-x) is as defined earlier. The p.g.f. 
(9) is the result of compounding a negative binomial distribution [parameters u and 
k(i,)] with a binomial distribution [parameter f(t-t,)]. Analogous reasoning to 
that used earlier shows that in this case, assuming the same distribution of faecal 
deposits, 

g(t,8) = exp ( atlnp-a J: In[ 1-q{U/(1-V[1-f(t-X)(1-S)]W(Xl]dX), (10) 

which is an extremely complicated distribution. However, the mean turns out to be 

Es(N) = atqp-l v u-'f'o k(x)f(t-x)dx, (II) 

which is of the same form as (7). The increased generality is achieved by the intro­
duction of the additional parameter u. Of course, the same type of modification for 
t>t, applies to (10) as for (6a). 

It is interesting to notice that (II) can be written down directly from other 
considerations. If f(8), g(s), and k(s) are p.g.f.'s of random variables X, Y, Z, then 
the mean of the compound variate specifled by f(g(k(s))) is simply E(X)· E(Y)' E(Z). 
Thus for any time subinterval i, the mean number of third-stage larvae is given by 

atn-'qp-'vU-'k(t,)f(t-i,), 

and summing this expression over all intervals, the contribution from intervals 
being stochastically iudependent, and lettiug n->-oo, gives the result (II). Uniqueness 
is guaranteed by the Continmty Theorem (Feller 1960, p. 262). 

We now turn to problems of estimation and consider model (6a) in detail. 
Suitable procedures for the other models can be worked out in a similar way. 
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III. ESTIMATION 

The quantity which is of major practical importance is the concentration of 
larvae per unit of area. In order to estimate this in an efficient manner from a given 
area A and a given number of sheep S, we subdivide A into L subunits of equal size a 
so that La = A. Moreover, the time interval [0, t] is also subdivided into T equal 
intervals oflength tjT. The p.g.f. for faecal deposits corresponding to any subinterval 
and for areas of size a, is given by 

{pj(1_q8)}at/TL. 

Now S sheep are introduced at t = 0 and the distribution of faecal deposits in 
the L subareas recorded for each time interval. If ru is the number observed in 
thejthplot for time interval i, then, if we let at = fJ, k' = fJjLT, and m' = k'y, where 
y = (l-p)jp, moment estimates of k' and m' are given by 

where 

and 

mi = ri., 

k
A

, -2 2 - -1 
i = rdSi.-rd , 

L 
Ti = ~ rulL, 

j=l 

L 
Si = L (r,,-f..)'j(L-l). 

j=l 

From Anscombe (1950) the variances of';"; and fc; are given by 

V(,;,,;) = m'(l+y)jL 

= fJy(l+y)jL'T, 

V(k;) = 2k'(k' +l)(l+y)'jy'L 

= 2fJ(fJ+LT)(1+y)'jy'£3T', 

and it can be shown that 0(';";, fc;) = o. 
Since we obtain T estimates of m' and k', one set for each subinterval, and 

since VOl,) = V(8;), all i, j, and e = m', k', it follows that the best linear estimates for 
the combined data are given by 

iii' 
T _ T ... 

L ';";jT, k' = L k;jT, 
i=l i=l 

with variances 
V(iii') = fJy(l+y)jL'T', 

V(k') = 2fJ(fJ+LT)(1+y)'jy'£3T3. 
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However, since we are interested in the distribution of faecal deposits at time t 
and not for a subinterval, the parameters of interest are k = Tk' = filL, and 

m = Tm' = (3YIL. Estimates of these are given by iii = Tiii' and k = Tk' and 
the variances are 

V(iii) = (3y(1 +y)IL2, 

V(k) = 2(3((3+LT)(I+y)2Iy2L3T. 

As stated earlier, it is the concentration of larvae which is of interest and 
we consider the quantity 0 = E(N)LIA (remembering that E(N) is now referred to 
areas of size a = AIL )which is estimated by 

~ /'-.. It /'--
Os = LEs(N)IA = LiiiA-l ol'(t,x)dx, (12) 

where 
~ 

ro~)dX= t 
is an estimate of the required convolution integral. We now find the variance of 6 s 
as a function of Land T and determine for which values of these two parameters it 
is minimized. Straight forward calculations show that 

V(Cs) = (L2IA2)( V(iii)UJ +m2v(I-)) (13) 

~ 

= ((3yIA2)((!+y)U:-)'+f3y VU:,)), 

It is shown below that for one method of estimating I: I'(t,x)dx, v(f·) = O(T-') 

and therefore the conclusion is that, in this case, V(i7s) is independent of Land 
decreases with increasing A and T. However, the estimate of k increases in precision 
with an increase in both Land T, while the variance of m only depends on L. 

It is, of course, possible to estimate the parameters k and m more efficiently by 
maximum likelihood methods (see Anscombe, loco cit.). In this case an expansion 

for V(C s) is easily obtained in terms of estimated variances of V(k) and V(m) of 
the maximum likelihood estimates. However, the additional rather heavy computa­
tional work necessitated by the maximum likelihood procedure does not really seem 
warranted. 

There remains the question of the estimation of J: tt(t,x)dx. There are numerous 

ways in which successive values of tt(t, x) can be estimated to provide ordinates 
for numerical integration. For ease of illustration, we consider just one direct 
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approach and we concern ourselves with the case t <tl' The analysis for other 
situations would be analogous. 

Assume now that [0, t] has been subdivided, as described above, into T sub­
intervals and let ti be the upper boundary for the ith interval. Then during each 
interval i (i = 1, 2, ... , T) F fresh faecal deposits are marked, and at time t the 
average number of larvae emanating from these deposits, in each of the T groups, 
is determined. If nij represents the number of larvae in the jth faecal deposit from 
the ith subinterval which survive to time t, then f.t(t, til is estimated by 

F 2: n;;/F = flit, til· 
j=1 

Suppose now, that in order to estimate f: f.t(t, x) dx, we use the trapezoidal rule for 

numerical integration, then 

t T f ':;;:;')dx = 2~ 2: (fl(t, t.J+fl(t, ti_1)) 

o i=l 

and, neglecting errors of integration, 

V(f·) = 4~:F ~ (I'(t, t.J+l'(t, t;_I)) 

(14a) 

t ft 
'" 2T F 0 I'(t, x)dx. 

For the case of t>tl , it is the interval [0, tl ] which is subdivided and measurements 
of larvae numbers are made at time t. Thus, for this case 

(f';;) t ft
, 

V o· '" 2,[, F 0 I'(t, x)dx. (14b) 

If, finally, it is desired to bring the discussion down to a sheep per unit area basis, 
then since a = So., for an average sheep the expected concentration is G = 0 sIS. 

Obviously, 0 = Os/S and V(O) = V(OS)/S2. 
No detailed discussion of estimation procedures for model (10) will be presented 

here. Obviously, the faecal component can be estimated as for (6a) and the remaining 
expression, 

v,,-lf: k(x)f(t-x)dx, (15) 

approximated in various ways. For instance, f(t) can be obtained by a separate 
investigation, while V,,-1 kit) can be calculated by establishing the egg output of 
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individual sheep in the flock at different points on the time scale. If T different 
time intervals are used, then the (T+l) parameters u and k(t,), i = 1,2, ... , T, 
can be estimated by maximum likelihood and the final expression obtained by 
numerical integration. Alternatively, the number of third~stage larvae, at time t, 
associated with faecal deposits dropped during previous time intervals can be obtained 
and the whole expression (15) approximated by numerical integration as for (6a). 
However, attention would have to be given to the variances of these estimates 
since they would not be of the same form as (14a) and (14b). 

IV. DrscussroN 

The distribution on pasture of the infective larvae of the gastrointestinal 
nematode parasites of sheep has been considered by Crofton (1952, 1954). He sampled 
the most evenly grazed portion of three pastures and showed that the observed 
frequencies of infective larval numbers agreed fairly closely with theoretical fre· 
quencies calculated according to Neyman's Contagious Distribution Type A (Neyman 
1939). It is intrinsic in this distribution that the clumps of organisms are Poisson­
distributed. Since Crofton (1954) has shown that this is unlikely to be true for the 
distribution of faecal deposits over a field being grazed by sheep, he has pointed out 
that this limits the usefulness of the Neyman model to small areas of pasture only. 

Donald (unpublished data) has fitted the negative binomial to the distribution 
of infective larval numbers recovered from 50 4win. quadrat samples of pasture 
collected from a i-acre field being grazed by five sheep, and has found k "" 0·2. 
While this is consistent with a contagious distribution, several quite different 
hypothetical situations will give rise to a negative binomial distribution (Anscornbe, 
loco cit.) Thus, obvious difficulties of interpretation arise when attempts are made 
to compare the distribution of infective larvae of different species and to follow 
movements of the distributions with time. 

The main purpose of this paper is to show how to construct models describing 
the distribution on pasture of the infective stages of parasites of grazing animals. 
Of the two models developed here, (10) is slightly more general since it incorporates 
component (4) of the Introduction. However, this increased generality introduces 
an extra parameter u, and the problems of estimation are increased. The simple 
properties of the Poisson distribution are lost and the rather natural interpretation 
of E s(N) is somewhat destroyed. 

However, for most purposes (7) should provide a sufficiently accurate description 
of the distribution of the larvae on pasture. Once the faecal component has been 
estimated, a and p, different theoretical curves for '\(t) and /(t) can be used in (7) 
in order to investigate the effects such changes would have on infective larval 
populations on pasture. This would provide information, say, on the comparative 
behaviour of two different species of parasite or on the behaviour of a single species 
under different environmental conditions. Furthermore, the effect of each com­
ponent of the model (faecal distribution, egg numbers per faecal deposit, and the 
mortality rate of the free-living larval stages) can be isolated and its ultimate 
influence on infective larval populations determined. 



DISTRIBUTION OF LARVAE OF NEMATODE PARASITES OF SHEEP 513 

The introduction of a time element into the models seems advantageous. The 
influence of time on the total distribution of infective larvae is now clearly specified, 
and this enables theoretical questions, such as equilibrium values, to be settled. 
This was not possible in earlier studies when less specific models were fitted to 
estimates of infective larval populations on pasture. 
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