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Summary 

Forty-nine litter series sired by TtO, Ttl, Pt3, Tt 9 , Tt12, and TtP' males of the 
house mouse were examined for heterogeneity of the transmission ratios of the 
l-allele. It was found that heterogeneity often I3xists, not only between males with 
the same t-allele, but even between litters from the same male; the latter was 
demonstrated by means of a new statistical technique. To measure the degree of 
heterogeneity, the mean square contingency was used as an index. It was found that 
intra-male heterogeneity was generally lower with "late" mating than with "normal" 
mating. 

It appears t,hat the behaviour in the female tract of spermatozoa carrying a 
t-allele differs from that of spermatozoa that do not have such an allele, and, further, 
that this behaviour is sensitive to slight variations in the physiological conditions 
in the tract. 

The statistical method used for examining the significance of the intra-male 
heterogeneity is described in an Appendix. It is a Monte Carlo method necessitating 
the use of an electronic computer. The method is useful in situations where cell 
frequencies are too low for the application ofaX2 test. 

1. INTRODUCTION 

While Mus musculus females transmit alleles of the T-locus normally (in equal 
proportions), males heterozygous for a t-allele usually have very aberrant transmission 
ratios (Chesley and Dunn 1936; Dunn and Gluecksohn-Schoenheimer 1939). It has 
been found that with such males the transmission ratio observed depends on: 

(1) the particular allele involved-tO, t" t3, etc. (Dunn and Gluecksohn­
Waelsch 1953); 

(2) the time of mating in relation to ovulation (Braden, 1958); 

(3) the genotype of the egg with respect to the T-locus (Bateman 1960; 
Braden 1960). 

With (1), (2), and (3) held constant, one would expect a constant transmission 
ratio. Instead, it was found that heterogeneity between males continued to exist 
when (1) and (3) were controlled (Dunn 1943), and when attempts were made to 
control (2) also (Yanagisawa, Dunn, and IBennettI1961). Moreover, [heterogeneity 
appeared to exist even between litters sired by a single male. 

A statistical proof that such "within-male heterogeneity" really exists is 
difficult because the low cell frequencies of the relevant contingency tables make the 
ordinary use of X' tests unreliable. A valid method of evaluating probabilities in 
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such situations is described in the Appendix and has been applied in this paper to 49 
Jitter series from Tt males mated with wild-type (+ +) females. The results are on 
the whole in agreement with those of earlier workers. 

II. :MATERIALS AND METHODS 

Much of the data analysed in this paper has been given in two earlier papers 
(Braden 1958, 1960) in the form of total numbers of normal-tailed and Brachy 
offspring. Details of colony management at Albert Einstein College of Medicine, 
New York, where part of the work was done (results from males A, B, C, D, E, F, 
and G), have been given elsewhere (Braden 1958; Braden and Gluecksohn-Waelsch 
1958). The strain of female employed there was a randomly-bred Swiss albino strain 
(herein designated SA). At the Division of Animal Physiology, CSIRO, Prospect, 
N.S. W., three randomly bred strains have been used: BW, an albino strain maintained 
by the Department of Veterinary Physiology, University of Sydney; LG, the Labor­
atory Animals Bureau's grey stock; and P, a coloured stock originating at and 
maintained by the Prospect Laboratory. The mouse room at Prospect is kept at 
73°F, with a 12 hr lightj12 hr dark regime. The mutant alleles T (Brachy) to, tt, 
t3, t9, t12, and t'Pl have been used. The allele t Pl was extracted from a wild house mouse 
caught at Parramatta, N.S.W. It is a recessive lethal and is evidently not identical 
with any of the other five alleles (i.e. to_t12), for males carrying tPl and to, or t Pl and 
t', etc. have been found to be sterile or very infertile (Braden and Gluecksohn­
Waelsch 1958). 

Mating cages normally contained one male and four females. Females were 
removed from the mating cages either when a copulation plug was seen or when they 
were obviously pregnant. They were allowed to drop their litters in separate cages, 
and the offspring were classified according to tail morphology as soon as possible 
after birth. The genotype +T has a shortened tail, whereas +t has a tail of normal 
length. The progeny were then usually discarded, but the dams were not returned 
to the mating cages for at least 2 days, in order to avoid mating at the oestrus that 
normally occurs soon after parturition. Care was also taken to introduce females 
into the mating cages only in the afternoon so as to avoid the poss~bility of mating 
takiJ::g place late in oestrus. These were the only precautions taken to ensure that the 
matings took place "early", i.e. before ovulation. This procedure is termed "normal 
mating". The "late-mating" procedure employed in New York has been described 
(Braden 1958). At Prospect the lights were on from 6·00 a.m. to 6·00 p.m.; the 
males were placed in the late-mating cages for 2! hr from 8· 00 a.m. Females with 
copulation plugs were removed and kept in separate cages until after parturition. 

III. RESULTS 

Litters sired by seven Tt O, two Ttl, four Tt3, five Tt9, eight Tt12, and one TtPl 

males were analysed. In 10 instances, two strains (SW and LG) of female were mated 
,vith the same male, and with 12 males, "normal" and "late" matings were run 
concurrently. A total of 49 sets of litters from Tt males (representing altogether 
435 Jitters and 3153 offspring) were obtained and analysed by the Monte Carlo method 
described in the Appendix. 
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TABLE 1 

HETEROGENEITIES WITHIN LITTER SERIES AND TRANSMISSION RATIOS 

Normal mating: Tt males 

Strain No. 
Male Male of of Total Transmission Probability* Nt a'ln~ 

Genotype No. Female Litters Offspring Ratio 

Tt' 6 SW 7 46 0·85 0·0294 § 0·29 
LG 4 27 0·89 0·672 § 0·05 

7 SW 10 78 0·82 0·990 400 0·03 
LG 10 67 0·46 0·0300 400 0·28 

8 SW II 70 0·74 0·370 200 0·15 
LG 8 63 0·78 0·0000 800 0·36 

19 SW 14 79 0·91 0·703 400 0·13 
LG 9 70 0·64 0·530 100 0·13 

23 SW 12 90 0·72 0·130 100 0·19 
LG 7 43 0·67 0·0688 800 0·25 

E SA II 109 0·80 0·285 200 0·12 
G SA 8 68 0·85 0·0443 § 0·21 

Tt' A SA 10 68 0·77 0·900 200 0·07 
B SA II 71 0·75 0·0.0750 400 0·29 

Tt' 9 SW 15 102 0·30 0·0457 2100 0·23 
LG 15 II3 0·32 0·0120 500 0·26 

10 LG 9 58 0·43 0·580 100 0·12 
21 SW 5 35 0·29 0·726 § 0·07 

LG 5 27 0·26 0·329 1000 0·16 
D SA 12 120 0·51 0·604 800 0·08 

Tt' 13 SW 4 21 0·29 0·374 § 0·16 
18 SW 8 50 0·20 0·312 § 0·17 
25 SW 9 42 0·24 0·574 § 0·17 
32 SW 7 51 0·37 0·120 200 0·23 
33 SW 12 77 0·29 0·730 200 O·II 

LG 3 12 0·50 0·610 § 0·13 

Tt12 3 SW 14 96 0·94 0·0842 § 0·21 
LG 4 23 1·00 1·000 § 0 

4 SW 13 83 0·81 0·840 200 0·08 
LG 13 88 0·80 0·0800 200 0·22 

5 SW 4 24 0·71 0·861 § 0·04 
17 SW 5 35 0·77 0·905 400 0·05 
40 SW II 70 0·79 0·0700 200 0·21 
C SA 9 45 0·89 . 0·403 § 0·19 
I SA 8 72 0·93 1·000 § 0·03 
F SA 6 61 0·90 0·294 § 0·10 

Tt'Pl 77 P 13 II8 0·88 0·0588 800 0·16 

* The probability of obtaining a distribution a·s heterogeneous as, or more than, the 
observed distribution (estimated by a Monte Carlo method, see Appendix). 

t N = number of random permutations genorated by electronic computer for each series 
(see Appendix). 

t Estimate of the mean sqUa1'e contingency (see Appendix, Section III). 
§ These probabilities have been calculated by the exact method (see Appendix). 
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Table 1 deals with litters from normal matings. It shows the average transmis­
sion ratios of t-alleles in Tt males for each litter series, and the estimated probability 
(under the null-hypothesis of equal probabilities for all litters iu a series) of obtaining 

"a; distribution of t-alleles as heterogeneous as, or more sO than, the observed distribu­
tion. These probabilities werel subsequently combined in a significance test, as 
explained in the Appendix, Section II. Statistical significance was found, suggesting 
that heterogeneity does, in fact, sometimes occur amongst the litters produced by 
females mated under normal conditions with a single Tt male. 

Male 
Genotype 

Tt' 

Tt' 

Tt' 

Ti 9 

'Pf12 
! 

Tt P' 

TABLE 2 

HETEROGENEITIES 'VITIU:::N LITTER SERIES AND TRANSMISSION RATIOS 

Late mating: Tt males 

Male 
Strain No. 

Total Transmission 
No. 

of of 
Offspring Ratio 

Probability* Nt 
Female Litters 

E SA 9 68 0·62 0·550 100 
G SA 10 81 0·56 0·220 100 

A SA 9 74 0·53 0·480 100 
B SA 9 72 0·53 0·560 100 

D SA 5 50 0·24 0·787 § 

25 SW 10 70 0·26 0·705 200 
32 SW 11 82 0·33 0·330 100 
33 SW 12 87 0·20 0·845 200 

C SA 8 80 0·84 0-0612 800 
I SA 5 41 0-71 0·805 400 
F SA 3 16 0·63 0·790 § 

77 P 8 60 0·48 0·00167 2400 

G'/nt 

0·09 
0·16 

0·09 
0·13 

0·04 

0·10 
0·15 
0·08 

0·16 
0·04 
0·08 

0·35 

* The probability of obtaining a distribution as heterogeneous as, or more than, the 
observed 'distribution (estimated by a Monte Carlo method, see Appendix) 

t N = number of random permutations generated by electronic computer for' each series 
(see Appendix). 

t Estimate of the mean squ.are contingency (see Appendix, Section III). 
§ These probabilities have been calculated by the exact method (see Appendix). 

Table 2 deals with litters from late matings in a similar way. Here, the COIDM 

bination of probabilities yielded no statistical significance, although two males of the 
series (Nos. 77 and C) were by themselves statistically significant or close to it. 

A non-significant result is, of course, no proof of homogeneity, nor does it 
necessarily indicate that such a sample is less heterogeneous than another statistically 
significant sample (see Cramer 1946, p. 443). To measure and compare degrees of 
heterogeneity, we propose the use of the coefficient C'/n, which is an estimate of the 
so~called mean square contingency_ Its properties are summarized in the Appendix, 
Section III. The values of C'/n are also listed in Tables 1 and 3. 
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Comparing the C'ln values for the 12 males used for both normal and late 
matings with females of the same strain, it is seen that nine out of the 12 males had 
higher C'ln values for the normal mating, suggesting that greater heterogeneity 
resulted from normal than from late matings. 

A similar comparison between SW and LG females, mated normally with the 
same male, shows that seven out of the nine males available produced a more hetero­
geneous litter series with the LG females than with the SW ones. In addition, with 
two males (TtO, Nos. 7 and 19) the average transmission ratios for SW and LG females 
differed significantly. Finally, comparing the C'ln values for males bearing different 
t-alleles, we find no striking difference between the various alleles, though litters sired 
by TtO males appeared to be somewhat more heterogeneous than those sired by 
Tt12 males. It may be noted also that males with high transmission ratio alleles did 
not produce more heterogeneous litter series than males with low ratio alleles. 

TABLE 3 

HETEROGENEITIES WITHIN LITTER SERIES AND TRANSMISSION RATIOS 

Normal mating: + + and + T males 

Male Female Male No. of Total Transmission 
Genotype Genotype No. Litters Offspring Ratio* O'/nt 

+T ++ 68 20 151 0·58 0·11 
7lA 26 170 0·53 0'11 
74 28 200 0·54 0·13 
75 21 154 0·49 0·10 
76 18 118 0·48 0'11 

++ Tt 67A 28 209 0·52 0·13 
68A 15 112 0·49 0·14 

* The transmission ratio listed for the first five litter series represents 
the male segregation ratio, i.e. the proportion of offspring inheriting the 
+a11ele; for the remaining two series it represents the female segregation 
ratio, i.e. the proportion of offspring inheriting the t-a11ele. 

t See Appendix:, Section III. 

Table 3 presents data from normal matings where the sire did not carry a 
t-allele. Here, the values of C'ln turned out to be remarkably uniform, ranging 
only from 0·10 to 0·14 for the seven litter series available. The values of C'ln for the 
Tt males in Table 1 were much more variable, ranging almost uniformly from 0 to 0·36. 

It may be seen from Table 1 that the transmission ratios vary not only between 
males with different t-alleles but also between males with the same. t-allele. But 
heterogeneity has now been shown to exist even between the litters of one' and the 
same male, suggesting that the variation may be due to the females. To gain an 
impression of the variation of transmission ratios between males with the same 
t-allele, as compared with the variation attributable to the females, the variance 
components were analysed for the transmission ratios of Table 1, treating SW and LG 
females separately. Variation between the five TtO males was found to be of the same 
order but somewhat less than the variation between females. The same was true for 
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the five Tt12 males. Variation between the other males carrying identical t-alleles 
was found to be negligible. 

IV. D,SCUSSION 

Dunn and co-workers (Dunn and Gluecksohn-Schoenheimer 1939; Dunn 1943, 
1960; Yanagisawa, Dunn, and Bennett 1961) have reported that there is a tendency 
for litters sired by males with a t-allele to be heterogeneous in the proportion of 
offspring inheriting the t-allele. However, the statistical methods hitherto available 
for examining this type of problem were either too cumbersome or unreliable (e.g. a 
X2 test is unreliable because of the low cell frequencies of the contingency tables). 
The present re-investigation of the problem, using a new statistical technique, 
establishes more firmly the existence of genuine heterogeneity between litters sired 
by individual Tt males. 

This "within-male" heterogeneity appears to be associated \'lith males that 
have at-allele: the heterogeneity between litters sired by + + and +T males was 
relatively low, even when Tt females ,vere used. :l\Iales heterozygous for at-allele 
also exhibit a number of other aberrancies. These all relate to the male segregation 
(or transmission) ratio of t and T, or t and +. The transmission ratios of Tt and +t 
males do not only in most cases depart significantly from the Mendelian expectation 
of 0·5, but are also affected by: 

(1) the particular t-allele carried by the male (Dunn and Gluecksohn-Waelsch 
1953; Braden 1958, 1960); . 

(2) the particular male, selected from males with the same t-allele ("inter-male" 
heterogeneity, cf. Dunn 1943; Braden 1960; and prcsent results); 

(3) the genotype of the egg with respect to the T-locus (Bateman 1960; 
Braden 1960); 

(4) the time of mating in relation to ovulation (Bradcn 1958; Yanagisawa, 
Dunn, and Bennett 1961); 

(5) the individual female or the conditions pertaining to individual matings 
("intra-male" heterogeneity, cf. Dunn 1943, Yanagisawa, Dunn, and 
Bennett 1961; and present results). 

It seems, therefore, that the t-allele has an effect on the function of the sper­
matozoon in which it is located, and that the type or magnitude of the effect can be 
influenced by relatively small changes in the physiological state of the female tract. 
Restriction of mating to a relatively short period (2-3 hr), as in late mating, might 
be expected to reduce variation between females in the physiological state of the 
tract and thus reduce variation between litters in the transmission ratio, and this, 
in fact, was observed. Further discussion of the effects of late mating will be reserved 
for a subsequent paper. 

The observed heterogeneity in the transmission ratios of males carrying the 
same t-al1ele may indicate that loci other than the T-Iocus influence spermatozoan 
function: there is, in fact, evidence that the dilute-short-ear region of chromosome II 
in the mouse may affect spermatozoan function (Russell and Russell 1960). However, 
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the investigations of Dunn (1943) showed that variation in transmission ratios of 
sib +t males was not reduced by five generations of selection from ~ single parent 
male, suggesting that much of the inter-male heterogeneity did not have a genetic 
basis. The present finding that intra-male heterogeneity was usually as great or 
greater than the inter~male heterogeneity also suggests a non~genetic basis for the 
variation between males ''lith the same t~allele. Possibly individual variation in 
mating behaviour, which would be influenced by both genetic and environmental 
factors, may be sufficient to explain any residual inter~male heterogeneity. 

V. ACKNOWLEDGMENTS 

The authors gratefully acknowledge the assistance of Dr. P. J. Claringbold, 
Division of Animal Genetics, CSIRO, who initiated the Monte Carlo method and 
designed its programming; Mr. N. H. Westwood, who programmed the method; and 
Mrs. Jean Williams, Division of Mathematical Statistics, CSIRO, for preliminary 
computational investigations. 

VI. REFERENCES 

BATEr-lAN, N. (1960).~Selective fertilization at the T·locus of the mouse. Genet. Res. 1: 226---38. 
BRADEN, A. 'V. H. (1958). Influence of time of mating on the segregation ratio of alleles at the 

T-Iocus in the house mouse. Nature 181: 786--7. 
BRADEN, A. W. R. (1960).-Genetic influences on the morphology and function of the gametes. 

J. Cell. Oomp. Physiol. 56 {suppl. I}: 17-29. 
BRADEN, A. W. R., and GLUECKSOHN·WAELSCH, S. (1958).-Further studies of the effect of the 

T-locus in the house mouse on male fertility. J. Exp. Zool. 138: 431-52. 
CHESLEY, P., and DUNN, L. C. (1936).-The inheritance of tailless ness (anury) in the house mouse. 

Genetics 21: 525-36. 
COCHRAN, W. G. (1954).-Some methods for strengthening the common chi-square tests. 

Biometrics 10: 417-51. 
CRAMER, H. (1946).-"Mathematical Methods of Statistics." (Princeton University Press.) 
DUNN, L. C. {l943).-A test for genetic factors influencing abnormal segregation ratios in the 

house mouse. Genetics 28: 187-92. 
DUNN, L. C. (1960).-Variations in the transmission ratios of alloles through egg and sperm in 

Mus musculus. Amer. Nat. 94: 385-93. 
DUNN, L. C., and GLUECKSOHN-SOHOENHEIMER, S. (1939).-The inheritance of tailless ness (anury) 

in the house mouse. II. Taillessness in a second balanced lethal line. Genetics 24: 587-609. 
DUNN, L. C., and GLUECKSOHN.WAELSCH, S. (1953).-Genetic analysis of seven newly discovered 

mutant alleles at locus T in the house mouse. Genetics 38: 261-71. 
FISHER, R. A. (1932).-"Statistical Methods for Research Workers." Rev. Ed. (Oliver and Boyd: 

London.) 
MOOD, A. M. (1950).-"Introduction to the Theory of Statistics." (McGraw.Hill Book Co. Inc.: 

New York.) 
PATNAIK, P. B. (1949).-The non-central X2- and F·distributions and their applications. 

Biometrika 36: 202-32. 
PEARSON, E. S., and HARTLEY, H. O. (1958).-"Biometrika Tables for Statisticians." Vol. 1. 

(Cambridge Univ. Press.) 
RUSSELL, L. B., and RUSSELL, 'V. L. {l960).-Genetic analysis of induced deletions and of spon­

taneous non-disjunction involving chromosome 2 of the mouse. J. Oell. Oomp. Physiol. 
56 (supp!. \): \69-88. 

YANAGISAWA, K., DUNN, L. C., and BENNETT, D. (1961).-On the mechanism of abnormal 
transmission ratios at the T-Iocus in the house mouse. Genetics 46: 1635-44. 



928 A. W. H. BRADEN AND H. WEILER 

APPENDIX 

TESTING FOR HETEROGENEITY IN 2 Xr CONTINGENCY TABLES 

WHEN CELL FREQUENCIES ARE SMALL 

1. TEST OF HOMOGENEITY 

Consider males with an abnormal allele which they transmit to a proportion 
of their progeny. When such males are mated with normal females, it seems reasonable 
to expect approximately the same proportion of abnormal animals in all litters pro­
duced, by the same male. The assumption that this is true constitutes our null­
hypothesis H 0, which may be stated in precise terms as follows: 

Ho: The probability of a heterozygous male producing an abnormal animal is 
the same for all normal females. 

However; if the observed proportion of abnormal animals varies considerably from 
litter to litter it may be justifiable to discard tbe null-bypotbesis in favour of the 
alternative hypothesis: 

HI: The probability of a heterozygous male producing an abnormal animal 
depends also on the mother of the litter (or the circumstances of the mating). 

To derive a procedure of testing H 0 against H l' we consider the mathematical 
model of r classes of litters, LI> L 2 , ••• , Ln where Li (i = 1, 2, ... , r) is the class 
containing the litters (past and future) of the ith female, produced under specified 
conditions. Suppose now that one litter is drawn at random from each litter class 
and that the litter taken from the ith class (i = 1, 2, ... , r) contains ni animals of 
which ai are abnormal and bi = ni-ai are normal. Altogether, there are then 
n = n1 +n2 + ... +nr animals of which a = a l +a2 + ... +Q:r are abnormal and 
b = bl +b, + . . . +br = n -a are normal. The litters actually obtained when one 
male is mated with r females are identified with the above litters, drawn at random 
from the classes L1, L" ... , L r • Thus, for instance, male 32 (Table 1) produced 
r = 7 litters with a total of n = 51 offspring, consisting of a = 19 abnormal and 
b = 32 normal animals, as shown in the following tabulation: 

Litter: L, L, L, L, L, L, L, Total 

Abnormal 0 2 5 5 5 19 

Normal 4 4 6 3 8 3 4 32 

Total 4 5 8 8 9 8 9 51 

Now, the actually observed situation is only one of a (usually large) number of 
possible allocations of a abnormal and b normal animals to litters of fixed sizes 
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nl , n z • ...• n r. The general case where the litters contain (say) Xl' Xz, ... , Xr abnormal 
and YI' Yz • ... , Yr normal animals, is represented below: 

Litter Class L, L 2 • .•• •• , Lr Total 

Abnormal x, X 2 •. • , • , • Xr a 

Normal Yi y, . . Yr b 

Total n, n, . . nr n 

If Pi is the (unknown) probability that an animal taken from any litter of the 
class Li is abnormal, the null-hypothesis to be tested may be stated in the form 

(Ho) P, = p, = ... = p, = P (say). (1) 

Now, consider the expression 
,. 

C' = '" [(xi-n-,p)' + (Yi-,:,iiJ'], 
~ niP niq 

(2) 

i = 1 
where 

p = aln, q = bin. (3) 

It is clear that the expression for C' will tend to be the larger the more the Pi differ 
from each other. Hence, if the value, 0;, actually obtained from the observed litters, 
is large, the null-hypothesis is discarded. More precisely, Ho is discarded in favour 
of H, whenever Pr(C'>C~lHo) (i.e. the probability that C'is greater than C~, given 
the null-hypothesis Ho) is less than a preassigned significance level a (e.g. a = 0·05). 

It is well known (Cochran 1954) that the expression forC' is approximately a X' 
variate with r-l degrees of freedom, provided the ndj and n/l (the expected cell 
frequencies) are not too small. The above probability can then be obtained easily by 
consulting a set of X' tables. 

When, on the other hand, the litter sizes are small or when p or fj is small, the 
exact distribution of (2) has to be considered. For this it is necessary to consider 
all possible allocations of a abnormal and b normal animals to the r litters in the 
above tabulation. Of these, some will yield a value C' >C~. Assuming H 0 to be true, 
the probability for each of these allocations is given by the formula (see e.g. 
Mood 1950, §12·1O) 

p _ a! b! n l ! n2 ! ... nt,! 
- n! Xl! . , ,Xr! YI! . ,-, Yr!' 

(4) 

and the sum of all these probabilities is equal to the required probability 
Pr (C'>C~IHo). 

But it soon becomes apparent that the computations required to calculate all 
the probabilities are prohibitive even with an electronic computer, except for a 
small number of small litters. A Monte Carlo method has therefore been designed 
by which Pr (C'>C~lHo) can be estimated without calculating the probabilities (4). 
The method used, and executed by electronic computer, is as follows .. 
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Denoting each of the a abnormal animals by 1 and each of the b normal animals 
by 0, the allotment of the n = a+b animals into litters of sizes n t • n2 • ... , nr can be 
simulated by partitioning any permutation of the n symbols 11 ... 100 ... 0 
(consisting of a ones and b zeros) into groups of lengths n l , n2 • ... , nn respectively. 
Now, if Ho is true, all permutations of these symbols are equivalent to equally-likely 
litter distributions, so that the probability P in (4) is equal toN(xl,x" ... ,x,)/n!, where 
N(X1 ,X2 • ... ,xr) denotes the number of permutations producing the allocation of 
X1,X2 • ... ,Xr abnormal animals to the litters L 1,L2 • ... ,LT' and n! is the number of 
all possible permutations. [Incidentally, it can be shown easily that 

N(X1 ,X2 • ... ,xr) = alb!nl ! ... nr!j(Xl! ... Xr !Yl! ... Yr!), 

which provides a simple proof of formula (4).] Instead of using formula (4) to 
calculate Pr{G'>G;!Ho} we now determine the value of G' for a sufficiently large 
number of random permutations and find out what proportion amongst them yields 
0 2 >O~. If amongst N permutations, drawn at random, Nl have G2>C~, the probability 
Pr{G'>G;!Ho} is estimated by N,/N. 

Note 1 

The above method of determining the probability Pr {G'>D:IHo} is based on 
the use of 0 2 to establish a ranking of heterogeneity of all possible litter combinations. 
In practice, 0 2 need not be used directly for this purpose, because the same ranking 
is obtained by means of the simpler expression 

D2 = 'f,xi2jni. (5) 

It can indeed be shown that 

G' = (n'/ab)[D'-(a'/n)], (6) 

so that 0 2 increases monotonely with D2, when a, b, n remain constant. The above 
probability is therefore identical with Pr {D'>D;IHo}, where D; is the value of D' 
obtained with the actual litters. 

Note 2 

The precision of the estimate N,/N of the probability Pr {G' >D:IH o} is shown 
in Figure 1, which gives the 95% confidence limits for the estimated probability. 
The graphs are similar to that in Pearson and Hartley (1958) but extend over smaller 
ranges, more suitable for the present' purpose. In this paper, sample sizes of less 
than 1000 were deemed to be sufficiently large in most cases. To test the accuracy 
of the programming of the Monte Carlo methods, the exact probabilities [formula (4)] 
were calculated for a few small litter series. The agreement was satisfactory. 

Note 3 

The use of G' (or D') for ranking is only one of many possibilities. Another way 
of ranking for heterogeneity would be the one where, of two litter combinations, 
the one with the smaller probability (under H 0) is regarded as the more heterogeneous 
one. The hierarchy established in this way is not always the same as that established 
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Fig_ 1.-(a}95% confidence limits for p (= the true probability ,of success in a random trial) in 
binomial sampling in the range 05,.Nt/N5,.O-25, and (b) in the range O'5,NI/N5,.O-025_ 
N 1 = number of successes in a sample of N random trials_ The confidence limits are given 
by the ordinates obtained for the abscissaNl/N of the curves corresponding to theparticuiar sample 

sizeN. 
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by 0'. It would be difficult to decide which of the various measures of heterogeneity 
would lead to the most powerful test, because it would depend on the type of devia­
tions from H 0 most likely to occur. The use of 0 2 has the advantage of simplicity 
and of being in common use. 

II. COMBINATION OF PROBABILITIES 

When several independent experiments are conducted to test a single null­
hypothesis HOI the result is not necessarily statistically significant when one or more 
of the experiments yield low probabilities. For in a large number of independent 
experiments a certain percentage of them must be expected to yield low probabilities 
even when in fact H 0 is true. On the other hand, the weight of evidence of the combined 
total of all experimental results may well be sufficient to disprove the null-hypothesis 
even if none of the experiments is significant by itself. 

To deal with such situations, Fisher (1932) considers the expression 

x' = -2:E InPi , (7) 

where InP; is the natural logarithm of the probability Pi obtained in a significance 
test of the ith experiment. If there are k independent experiments (i = 1,2, ... , k), 
the above expression is a X2 variate of 2k degrees of freedom. The null-hypothesis is 
rejected when X2 exceeds the significance value X~ obtainable from X2 tables. 

Applying the theory to the situation in this paper, the null-hypothesis is that 
the group of litters produced by one heterozygous male is homogeneous, and that 
this is so for every one of the k heterozygous males used. Since there are k such 
males, we have k litter groups and k probabilities Pr {O'>O~IHo}, as defined above. 
To test the null-hypothesis, these k probabilities are combined by formula (7). 
If the result is significant, the null-hypothesis is rejected. The alternative hypothesis 
to be accepted is then that at least one of the k litter groups is not homogeneous. 

In particular, for the k = 37 probabilities in Table 1, we would have to 
compute the sum 

x' = ~2[ln 0'0294+ln 0·672+ ... +In 0'0588]. 

However, since here the probabilities are only estimates of the true probabilities Pi 
(with a few exceptions), the value obtained is not exact. Errors are particularly 
serious ·when small Pi values are inaccurately estimated. Hence, the fact that the 
above sum yields a significant value does not allow the conclusion that the experimental 
results are themselves significant. To overcome this difficulty, the true Pi values 
were conservatively estimated by replacing the values in Table 1 by their upper 95% 
confidence limits. (For instance the fourth probability 0·0300 in Table 1 was replaced 
by O· 052, obtained from Figure 1 for N = 400). Since the value of X' amended in 
this way continued to be significant, it was reasonably assumed that the experimental 
results were in fact statistically significant. 

For the k = 10 probabilities listed in Table 2, the value of X' turned out to be 
non-significant and continued to be so when the lower 95% confidence limits of the 
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probabilities were used instead. It was therefore reasonable to assume that the tr.ue 
probabilities, if available, would also have resulted in a non-significant result. Had 
the last result been significant, it could have been due to over-correction of the 
probabilities; a conclusive result, one way or the other, could then have been reached 
only by a more precise estimation of the probabilities. 

The somewhat intuitive procedure adopted here should be satisfactory to 
overcome the difficulties of dealing with estimated probabilities instead of exact 
values. Generally, N will have to be large when Pi is small, which could be achieved 
by programming the computer to run until a fixed number N 1 of successes is obtained. 
A non-significant result means of course no more than that there is insufficient 
evidence of heterogeneity. 

III. A GENERAL COEFFICIENT OF HETEROGENEITY 

While 0' is a suitable quantity for testing whether heterogeneity does or does 
not exist, it is, as it stands, quite unsuitable as a measure of the degree of hetero­
geneity. For 0' and the probability that the value found for 0' is exceeded both 
depend on the number and size of the litters. Take for instance the series of litters 
produced by male No. 32 (see tabulation p. 928). The value of 0' turns out to be 
equal to ll· 7, and the probability of exceeding this value by mere chance was found 
to be 0·12. Now consider the hypothetical litter series obtained by doubling all 
numbers in that tabulation. The new series should of course be regarded as equally 
heterogeneous. But now 0' ~ 2 X ll· 7 ~ 23·4 and the probability of exceeding 
this value is less than 0·01, as may be seen at once by treating 0 2 as a X2 variate of 
6 degrees of freedom. 

On the other hand, the quantity O'in is unaffected by the doubling of all num­
bers and has other properties that make it eminently suited to measure the degree 
of heterogeneity, viz: 

(1) O'in always lies between 0 and 1. It is equal to 0 only when the abnormal 
animals are strictly-distributed in proportion to the litter sizes and is equal 
to 1 only in the case of extreme heterogeneity when each litter contains 
either only normal or only abnormal animals. (In the very special case 
when there are only animals of one kind, O'in is put equal to 0 by definition, 
since it is obviously a case of perfect homogeneity.) 

(2) O'in is independent of the number of litters in the sense that it remains 
unchanged when the r litters are replaced by kr litters with k litters similar 
to the original first litter, k litters similar to the original second litter, etc. 

(3) O'in remains unchanged when all numbers in a table of litters are multiplied 
by the same constant. 

Note 4 

The quantity O'in represents an estimate of the so-called "mean-square 
contingency", introduced by K. Pearson for the general case of rXs contingency 
tables. Following Cramer (1946, p. 282), consider a discrete bivariate population in 
which every object has one of the characters A" A" ... ,A, and one of the characters 
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B
" 

B" ... , B,. Let p" (i = 1, ... , r; j = 1, ... ,8) be the probability that a 
random object has the characters Ai, B,. The (marginal) probability that a random 
object has the character Ai is then 

Pi. = Pil + ... +Pis (8) 

and similar~y 
p.j = Pb+ ... +Pri (9) 

for the character B j • Complete independence (or homogeneity) bet\veen the A's 
and B's may then be expressed by the rs equations 

Pij-Pi.P.j = O. (10) 

When, on the other hand, the A's and B's are not completely independent, their 
degree of dependence (or heterogeneity) may be measured by K. Pearson's mean 
square contingency, defined by 

, , . 

4>' = '" '" (PH-Pi, P.j)'. 
~~ Pi,P'j 

(Il) 

i=l j=l 

Obviously, 0/2 is non-negative and is equal to zero only in the case of complete 
independence. Moreover, it can be shown that 4>2~q-l, where q is the number of 
rows or columns in the contingency table, whichever is the smaller. Hence (P/(q~l) 
varies between 0 and 1 and may be taken as a standardized coefficient of heterogeneity. 

To estimate the value of this coefficient from the cell frequencies nii when the 
true probabilities Pii are unknown, it is natural (see Cramer, 1946, p. 443) to replace 
the probabilities PH by the relative frequencies no/n. This leads to the estimate of the 
mean square contingency 

, , 
~, =...! '" '" (nH-ni. n.,ln)', 

n L.. L.. ni · n.i/n 
i= 1 j= 1 

where ni . = nil + ... +nis , n'i = nlj + . . . +nTj' We see that cfo2 is identical with 
C'ln, where C2 is the expression usually denoted by :E (0-e)2/e and customarily used 
for a X2 test of contingency tables. To estimate the degree of heterogeneity in any 
contingency table we therefore propose the quantity C'ln(q-l), which in the special 
case of this paper reduces to C'ln because 8 = q = 2. 

In conclusion, we note that it can be shown (Patnaik 1949) that for large values 
of n (and subject to certain other conditions) the variate 0 2 approaches a non· central 
X2 distribution with non· centrality parameter n4>2. Hence approximate confidence 
limits could be determined for the above coefficient of heterogeneity. 
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