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Summary 

A general method is given for the numerical solution of the equations 
governing the diffusion of charged ions through layers containing specified concen
trations of fixed charge. Using this method, the properties of a membrane model 
50 A thick in which the first half is positively and the second half negatively charged 
are investigated. Results presented are: the required ionic mobility to give 
resistance values similar to those observed, the voltage-current relation in such a 
model, the profiles of ionic concentration. The ionic concentrations found were 
compared with those given by the Boltzmann distribution. It is found that there 
is good agreement with the Boltzmann values for zero current, but that for finite 
membrane currents there is a significant disagreement. 

The amount of disagreement for finite current was investigated theoretically, 
and a criterion established which specifies the distance from a reference point over 
which the Boltzmann distribution is a sufficient approximation. 

I. INTRODUCTION 

At present there is no quantitative theory which accounts satisfactorily for 
membrane excitability. Two models which have received much attention are the 
"activation" type of model of Davson and Danielli (1952) and Goldmann (1964) on 
the one hand, and the "fixed-charge" model of Meyer and Sievers (1936) and Teorell 
(1953) on the other. 

The fixed-charge theory attempts to explain the diffusion kinetics of ions 
diffusing perpendicularly to the plane of a thin membrane separating two electrolytes 
which may have different compositions. In the membrane the existence of one or 
more layers of fixed charges which may be of either sign is assumed. Recently, 
Mauro (1962) has shown that the fixed-charge theory can provide an understanding of 
membrane capacity, and Coster (1965) has discussed the membrane voltage-current 
relation from the viewpoint of the fixed-charge theory and, in particular, has 
presented a model accounting for ionic "punch through" observed at large hyper
polarizing voltages. 

In all of the above discussions of biological membranes from the fixed-charge 
point of view, simplifying assumptions have been made in order to arrive at an 
approximate soluti~n. 

We are currently engaged in obtaining computer solutions for various fixed
charge configurations, and in this report we give results obtained up to the present 
time. 
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II. THEORY 

The model is shown in Figure 1, and consists of two regions of fixed space 
charge, a region of fixed positive charge extending from x = a to x = b and a region 
of fixed negative charge extending from x = c to x = d. These regions are assumed 
permeable to mobile ions of charge ±q. 

This system is assumed immersed in an electrolyte in which the concentrations 
of positive and negative ions are P and N. A steady current flows, taken as positive 
if flowing from left to right. 
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CONCENTRATiON OF 
MOBILE IONS AT 
LARGE -VE 
DISTANCE x_ 

P2 N2 

CONCENTRATiON 0 
MOBILE IONS AT 
LARGE +VE 
DISTANCE 

Fig. I.-The general membrane model. In 
the particular problem considered in this 
paper, Pl = N 1 = P 2 = N2 = 6 X 1023/m 3, 
F- = F+ = 6xI025/m 3,andab = cd = 25A. 

Let Ip (In) = current carried by positive (negative) ions, and let fLp (fLn) = 
mobility of positive (negative) ions. F is the fixed charge concentration. In the steady 
state 

Ip = const. = -kTfLp dP/dx+PqfLpE, 

In = const. = kTfLn dN/dx+NqfLnE, 

where E = electric field intensity. Therefore 

and 

dP/dx = (-Ip+PqfLpE)/kTfLp, 

dN/dx = (In-NqfLnE)/kTfLn, 

drf>/dx = -E, 

dE/dx = q[F+P-NJ/ErEO, 

where Er = relative permittivity of the membrane, 

EO = permittivity of free space, and 

rf> = electric potential. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

In order to integrate these equations by numerical methods, the difficulty 
presents itself that the boundary conditions are only specified for x -?>- ± 00, namely, 
as x -?>- 00, dP/dx -?>- 0, and, from (3) and (4), 

and as x -?>- + 00 

Ip = PlqfLPEl}, 
In = N1qfLnEl 

Ip = P2qfLPE2), 
In = N 2qfLn E2 

(7) 

(8) 
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where EI and E2 are constant field strengths. It is shown in the Appendix that for 
distances large compared with the Debye length, L D , where 

i.e. at 

then 

LD = (€r€OkT/2 q2Pt)l" 

x=-L (L';p LD ) 

E = EI +el exp(exx) ) 
P = PI +pl exp(cxx) , 
N = NI+nl exp(exx) 

(9) 

where each of the second terms on the right-hand side of equation (9) is small in 
comparison with its corresponding first term. The attenuation constant ex is given by 

ex = [(2q2PI/€r€okT)+(qE I/kT)2]!. (10) 

Of the three constants nl, PI, er, only one (say nl) is independent, the remaining two 
being given by [see Appendix, equations (A9)-(A11)]: 

el = -nl[(qEI +exkT)/qPI], 

PI = -nl[(qEI +exkT)/(qEI-exkT)]. 

III. COMPUTER PROCEDURE 

We begin by assuming the current density I is specified. Since 

I = Ip+ln = PIqEI(fLp+fLn), 

(11) 

(12) 

(13) 

this determines EI and hence I p, In separately from (7) and ex from equation (10). 

An arbitrary value is chosen for ni. Equations (11) and (12) give el,pI, and hence 
we may now integrate equations (3)-(6) starting at x = -L and using as initial 
conditions [from (9)] 

E(-L) = EI+eIeXp(-cxL)) 
P(-L) = PI+PI exp(-exL) . 
N(-L) = NI+nl exp(-exL) 

(14) 

So far, the value of ni is arbitrary. The various solutions obtained for different 
values of ni are all possible solutions of the set of equations (3)-(6). In order to 
determine the value of ni for our specific problem, some further criterion needs to 
be specified. Then that solution which satisfies this additional criterion is accepted 
as the solution to the specified problem. 

The nature of the additional criterion will depend on the particular problem 
to be solved. The problem considered in this report is that illustrated in Figure 1, 
with PI = NI =P2 = N2 = 6X1023/m3. Two adjacent equal and opposite layers 
of fixed charge, 25 A thick, are surrounded by electrolyte of equal concentration 
on each side. For simplicity we also assumed fLp = fLn. From symmetry it follows 
that at x = 0 (the junction of the two fixed-charge layers), the concentrations of 
the negative and positive mobile ions should be equal, i.e. 

P(O) = N(O). (15) 
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We found x = L = 500 A to be a convenient starting point. We therefore integrated 
equations (3)-(6) from this point using the Runga Kutta routine on the KDF9 
Computer in the Basser Computing Department, University of Sydney. Initial 
conditions were obtained from equations (14) and the integration continued as far as 
x = 0 using integration steps of 0·1 A. At x = 0 the difference P(O)-N(O) was 
examined. If this difference was greater than P(0)J1000, then nl was modified and 
the computation repeated until 

IP(O)-N(O)IJP(O) < 10-3• (16) 

This was taken as satisfying equation (15) to sufficient accuracy. In our experience, 
some 20-30 runs were required before (16) was satisfied, though with some experience 
it should be possible to reduce this number. 

IV. RESULTS 

(a) Internal Ionic Mobility, (LI 

The ionic mobility in the surrounding electrolyte is well known, and for this 
we took the value for potassium ions, namely (LO = 7·6 X 10-8 m2 sec-l V-I. 

However, (LI, the mobility in the membrane substance is not so well known, and we 
therefore explored possible values for (LI. 

200 

v (mv) 

VA 

__ 125 ----vpt --

100 

200 

Fig. 2.-Potential profiles for I = 0 (- - -) and for I = 1·17 mA/cm2 (--). 

In Figure 2 is shown a plot of potential against distance for zero current (broken 
line) and for a current of 1·17 mAJcm2 (full line). At sufficient distance from the 
membrane the potential on each side, A and B, is seen to be the same for 1=0 
(i.e. VA = VB)' Namely the membrane potential V AB = O. However, for 
I = 1·17 mAJcm2 , the asymptotic potential values V A and VB on each side of the 
membrane differ, and this difference we have taken as the membrane potential, V: 

V= VA-VB. (17) 

Next we obtained curves of V [eqn. (17)] against I for various values of (LI and the 
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results are shown in Figure 3. It is seen that only for /L1 = IO-L IO-4I-'o do we 
obtain membrane resistances of order 100-1000 n cm2 as found in practice. For all 
further investigations we therefore took 1-'1 = 10-31-'0, i.e. 

300 

b 

1-'1 = 7·6 X 10-11 m2 sec-1 V-l. 
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Fig. 3.-Current-voltage relations for fixed-charge membrane model for various 
values of the internal mobility: a, 7·6xlO-10 ; b, 7·6x10-11 ; c,7·6x10-12 

MKS units. p.o, mobility in external solution = 7·6 X 10-8 MKS units. For 
/LI = 7·6 X 10-9 the curve is indistinguishable from the verticai axis, and for 

P.l = 7·6 X 10-13, from the horizontal axis. 

(b) Rectification 

(18) 

For the 1-'1 value given in equation (18) a more extended V v. I curve is shown 
in Figure 3, curve b. This is seen to show a mild degree of rectification, the resistance 
in the forward direction being about one-fifth of that in the backward direction. 

(c) Ionic Ooncentrations 

These are shown in Figure 4 for zero current. The positive ion concentration, 
P, shows the expected maximum in the negative fixed-charge region and minimum 
in the positive fixed-charge region. These maximum and minimum values are: 
P max = 3·4xI025 jm3, P min = 1·0xI022jm3• The profile of the negative ion con
centration is the mirror image of that for the positive ions for the problem in hand. 
For the thickness of the fixed-charge region chosen, 50 A, the mobile ion concentra
tions never settle down to steady values inside the membrane. Over the range of 
currents so far investigated (0-2·0 mAjcm2) the change in the concentration profiles 
is not very great, being less than 30%. It was found that the changes in the minority 
ion concentrations were greater than the changes in the majority ion concentrations 
by a factor of 2-3, depending on the current density. 
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(d) Space Oharge 

The space charge concentration is given by 

p = q(F+P-N), (19) 

and the values given by equation (19) are plotted in Figure 5 for 1= o. The dotted 
lines indicate the values of F. The distributions for the other currents investigated 
are very similar. The space charge is seen to be large throughout the entire "mem
brane" thickness and to extend into the ionic solution, with a change of sign at the 
membrane boundary. 
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Fig. 4.-Concentration profiles of positive 
and negative ions for zero membrane current. 

(e) The Boltzmann Distribution 

In the absence of net current, the charge distributions satisfy the Boltzmann 
distribution: 

P(x) = P(xo)exp(-qcfojkT) }. 

N(x) = N(xo)exp(qcfojkT) 
(20) 

where Xo is some reference point and cfo is the electrical potential with respect to this 
point. 

It is frequently assumed (e.g. Teorell 1953; Mauro 1962; Coster 1965) that 
the Boltzmann distribution is still satisfied in the presence of current. This is obviously 
not so in the case of a metallic conductor, and it seemed worth investigating to what 
extent this assumption was valid for the present problem. 
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We therefore in all cases computed the values of P(x) and N(x) from equation 
(20) and compared them with the values obtained by integration. 

The zero of potential was taken at the point where the integration was started, 
namely Xo = L = 500 A. Such a comparison is presented in Table 1 for currents 
1= 0 and I = 0·6 mAJcm2• For I = 0, of course, there should be complete agreement. 
The small discrepancies observed (~ 1 %) can be attributed to the cumulative errors 
in the computation. For a current of 0·6 mAJcm2, however, it is seen that the 
discrepancies are significantly greater, and become progressively so as one proceeds 
through the membrane. 
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Fig. 5.-Space-charge density (in units of 1025 electronic 
charges/m3) in the membrane model for zero current. 

V. DISCUSSION 

(a) Ionic Mobility 

The results in Figure 3 show that the resistance of the fixed-charge membrane 
model can only be brought into line with that observed by assuming the ionic diffusion 
coefficient to be much lower, by a factor of order 10-3 in the membrane compared 
with that in aqueous solution. This may be compared with the rates of diffusion 
through monolayers of fatty acids measured for a variety of gases by Hawke and 
Alexander (1962) and for monolayers of alcohols by Blank (1962). In both cases the 
diffusion rates are in many cases similar to those found for the aqueous phase. 

A way out of this difficulty would be to suppose that the ions can only diffuse 
through pores which present a total area equal approximately to 10-3 of the membrane 



466 E. P. GEORGE AND R. SIMONS 

TABLE 1 

COMl'AlUSON OF CONCENTRATIONS OF POSITIVE AND NEGATIVE IONS IN A "MEMBRANE" 50 A 
TlIICK WITII THOSE GIVEN BY THE BOLTZMANN DISTRIBUTION 

The values in the last four columns should be multiplied by 1023 to give actual concentrations 
per cubic metre. The "membrane" extends from x = -25 A to x = +25 A 

Negative Ion Concentration, N Positive Ion Concentration, P 

x 

'" (A) (mV) Boltzmann Present Boltzmann Present 
Distribution Results Distribution Results 

1=0 

-100 38·55 26·62 26·61 1·351 1·352 
-75 51·45 43·83 43·82 0·821 0·821 
-50 70·7 92·3 92·3 0·389 0·390 
-25 104·7 343·8 343·7 0·1047 0·1047 
-20 109·7 416·3 416·3 0·08643 0·08645 
-15 105·85 358·8 358·7 0·1002 0·1003 
-10 90·69 199·65 199·62 0·1801 0·1802 
-5 57·48 55·32 55·31 0·651 0·651 
-2 26·14 16·48 16·48 2·184 2·184 
-1 13·61 10·15 10·15 3·55 3·55 

0 0 6·0 6·0 6·0 6·0 
1 -13·71 3·53 3·53 10·19 10·19 
2 -26·36 2·17 2·17 16·61 16·61 
5 -58·02 0·637 0·637 56·47 56·48 

10 -91·86 0·172 0·172 208·7 208·8 
15 -108·1 0·0919 0·0919 391·5 391·6 
20 -114·7 0·0713 0·0714 504·0 504·5 
25 -109·6 0·0865 0·0865 416·2 416·3 

1 = 6·0A/m2 

-100 37·5 25·6 25·6 1·407 1·404 
-75 50·01 41·5 41·5 0·867 0·866 
-50 68·5 84·7 84·8 0·425 0·423 
-25 100·35 290·1 290·4 0·124 0·124 
-20 103·0 320·8 321·2 0·112 0·0661 
-15 92·41 213·4 213·7 0·169 0·0393 
-10 64·26 71·91 72·04 0·50 0·0271 
-5 12·59 9·76 9·798 3·69 0·0397 
-2 -31·06 1·807 1·826 20·0 0·140 
-1 -47·76 0·947 0·964 38·0 0·254 

0 -65·56 0·476 0·491 75·7 0·491 
1 -83·40 0·238 0·253 151·2 0·966 
2 -100·2 0·125 0·139 288 1·834 
5 -144·0 0·023 0·0394 1,592 9·901 

10 -195·9 0·00309 0·0269 11,650 73·56 
15 -224·4 0·00103 0·0389 34,950 221·4 
20 -235·7 0·00066 0·0645 54,550 342·6 
25 -234·9 0·00068 0·115 53,000 311·0 
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area. Within these pores, diffusion is limited by fixed charges on the walls of the 
pores. Such a model has been suggested by Sollner (1945). This model then comes 
rather close to the alternative, activation, type of picture. 

(b) Ionic Concentration Profiles 

For fixed-charge regions considerably thicker than those considered here, the 
concentrations of mobile ions assume constant values except at the boundaries 
(Mauro 1962). For this to occur the fixed-charge regions would need to be several 
hundred microns in thickness. It would seem to follow that discussions of the fixed
charge model which assume constant values of the mobile ion concentrations in the 
fixed-charge regions for zero membrane current, and small linear departures from 
these for finite current must be assumed as applying only to membranes much thicker 
than those found in practice (Coster 1965). 

(c) Space Charge 

Space charge has either been assumed to be non-existent (Teorell 1953) or 
confined to a narrow "depletion layer" at the boundary of the fixed-charge region 
(Mauro 1962; Coster 1965). It is seen that neither of those assumptions can be made 
for membranes whose thickness is of the order of that observed in practice. For a 
membrane in which the thickness of the fixed-charge region is 50 A, it is seen (Fig. 5) 
that the space charge extends through the entire membrane, in disagreement with the 
treatment presented by Mauro (1962). Mauro has shown that an applied potential 
so modifies the thickness of the depletion layer as to give rise to an effective membrane 
capacitance. Where the depletion layer extends right through the membrane, and 
beyond, it is still possible for the capacitance to be explained along the lines suggested 
by Mauro, but the numerical value of the capacitance will doubtless be different 
from that so far estimated. 

(d) Boltzmann Distribution 

The results in Table 1 indicate that the Boltzmann distribution [equation (20)] 
may not be a good predictor of ionic concentration in the presence of current. Setting 
1=0 in equations (3) and (4) leads immediately to the Boltzmann distribution. 
Thus, if I is small we may expect only small departures from the Boltzmann dis
tribution, which increase progressively as the current I is increased. It would be 
convenient to have a criterion indicating the region of approximate validity of 
Boltzmann's distribution for a given current. This may be obtained as follows. 

In equation (3), for example, set 

P = Po exp( -qc/>/kT)+p(x), (21) 
in which 

c/>=O} P =Po atx=Landp/P~l. 

L is an arbitrary reference point and is also the point at which the integration of 
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equations (3)-(6) was commenced. Substituting (21) in (3): 

dpldx-pqElkT = -IplkT/Lp (22) 

as a first approximation. The numerical results obtained show that the second term 
is small compared with the third, thus 

P ~Ip(L~x)lkT/Lp. 

Thus pIP ~ 1 if I p(L-x)lkTP/Lp ~ 1, or 

where 
(L-x) ~ kT/LIIEoq/Lo 

/Ll = membrane ionic mobility, 

/LO = ionic mobility in open solution, 

Eo = field strength at large distance. 

In our particular case, equation (24) leads to the numerical value: 

L-x < 100 A . 

(23) 

(24) 

(25) 

for a current of 1·5 A/m2. The more exact solution of equation (22) leads to 
pIP~ 1 if 

I fill - .~ L exp(qcfolkT)dx ~ 1. (26) 

Clearly p = 0 if Ip = o. In our case an average value of exp(qcfolkT) is e2 approxi
mately and equation (26) leads to a similar value [equation (25)] for the range over 
which the Boltzmann distribution may be taken as a guide to the ionic concentration. 
This prediction is seen to be consistent with the results in Table 1. It thus appears 
inadvisable to assume the Boltzmann distribution for the ionic concentrations unless 
the inequality (26) is satisfied. 

VI. CONCLUSIONS 

From the results obtained the following conclusions may be drawn concerning 
the electrical properties of the fixed-charge membrane model discussed in this paper: 

(1) The observed values for membrane resistance are only obtained if the ionic 
mobility inside the membrane is 1O-L I0-4 of that observed in ionic solution. 
This could be explained in terms of normal mobility in pores which occupy 
only 1O-L I0-4 of the total membrane area. 

(2) Under the conditions investigated the model shows a mild degree of 
rectification. 

(3) The characteristic length over which changes in ionic concentration occur 
is comparable with the "membrane" thickness studied, namely 50 A. 
Consequently, in fixed-charge membranes of realistic thickness, the ionic 
concentrations never achieve the steady values they would approach 
asymptotically for membranes of greater thickness. 
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(4) From the previous conclusion, it follows that the region of space charge 
occupies the entire thickness of the membrane. 

(5) For membrane currents in the range of practical interest, passage of current 
produces a significant departure of the ionic concentrations from those 
given by the Boltzmann distribution. 
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ApPENDIX 

In equations (3)-(6) substitute the following approximations, valid for dis
tances large compared with the Debye length L D, bearing in mind that e, p, and n 
are small perturbations: 

We then obtain 

E = EI+e(x), 

P =PI+P(X), 

N = NI+n(x). 

dpjdx = (IjkT (tp)[ - I p+q(tp(PI +p )(EI +e)], 

dnjdx = (IjkT(tn)[In-q(tn(NI+n)(EI+e)], 

dejdx = (qj€r€O)[p-n]. 

In (AI )-(A3) equate terms of various orders: 

Ip = q(tpPIEI ; In = q(tnNIEI, 

dpjdx = (qjkT)[EIP+PIe], 

dnjdx = (-qjkT)[EIn+NIe], 

and ignore terms in second order of smallness. Substituting 

p(x) = PI exP(ax)] 
n(x) = nl exp(ax) , 
e(x) = el exp(ax) 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 
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where el, PI, and nl are small constants, in (A3), (A5), and (A7) gives 

(qEI-lXkT)PI +qPI el = 0 

(qEI +lXkT)nl +qPI el = 0 

-qPI/€r€o+qnl/€r€O+lXel = 0 

The determinant of the equations (AS)-(AlO) must be zero, and this gives 

IX = [(2q2PI/€r€okT)+(qE I/kT)2]i, 

(AS) 

(A9) 

(AlO) 

(All) 

IX being known, equations (AS)-(All) give expressions for any two of the constants 
PI, nl, el in terms of the third. 
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