INFRARED REFLECTANCES OF PLANT LEAVES

By C. L. Wong* and W. R. Blevin \dagger

[Manuscript received October 26, 1966]

Abstract

Summary The total spectral reflectances of leaves have been measured over the wavelength range $2-12 \mu \mathrm{~m}$ or $2-14 \mu \mathrm{~m}$ for 15 plant species, and at the wavelengths 8,10 , and $12 \mu \mathrm{~m}$ for a further 32 species, the radiation being incident at 10° to the normal. At wavelengths greater than $3 \mu \mathrm{~m}$ the reflectances are less than 0.05 for the majority of the leaves, and values greater than $0 \cdot 1$ have been obtained for leaves from only one species. In the $2-3 \mu \mathrm{~m}$ region higher values of reflectance are common.

I. Introdutution

In order to understand the radiant exchange of heat between plants and their environments it is necessary to know the spectral properties of the leaves. Two spectral regions need to be considered, the wavelength range $0 \cdot 3-3 \mu \mathrm{~m}$ which contains most of the solar radiation reaching the earth's surface, and the range $3-70 \mu \mathrm{~m}$ in which bodies at temperatures about $300^{\circ} \mathrm{K}$ emit most of their thermal radiation. Within the latter region the interval $8-13 \mu \mathrm{~m}$ is specially significant, for two reasons. Firstly, this interval includes the maximum of the spectral energy distribution curve (in terms of wavelength) for black-body radiation at $300^{\circ} \mathrm{K}$. Secondly, the atmosphere exhibits only slight absorption in this part of the spectrum and the radiant cooling of the earth's surface at night is largely through this spectral "window".

For wavelengths shorter than $2 \mu \mathrm{~m}$ the spectral properties of leaves are well known, having been measured by several workers including Coblentz (1913), Shull (1929), Billings and Morris (1951), Moss and Loomis (1952), Birkebak and Birkebak (1964), and Gates et al. (1965). The spectral absorptances of leaves are commonly about 0.8 or higher in the visible spectrum, decreasing rapidly beyond the wavelength $0.7 \mu \mathrm{~m}$ to a value of about $0 \cdot 1$, but increasing again over the range $1 \cdot 2-2 \cdot 0 \mu \mathrm{~m}$ to values approaching unity.

For wavelengths greater than $2 \mu \mathrm{~m}$, the only detailed investigation of leaves known to us is that by Gates and Tantraporn (1952), who found leaves to be opaque in this spectral region, and measured spectral reflectances at several wavelengths in the range $3-25 \mu \mathrm{~m}$ for 27 plant species. The values obtained were typically about $0 \cdot 05$, the highest being 0.17 for a leaf of Citrus limonia at the wavelength $10 \mu \mathrm{~m}$. However, these measurements took into account only the specular component of the reflected radiation, as clarified in a later article (Gates et al. 1965), and were mostly made at the large angle of incidence of 65° to the normal.

[^0]The spectral directional emissivity of a surface can often be evaluated conveniently by applying Kirchoff's Law, which states:

At a point of a surface of a thermal radiator the spectral directional emissivity is equal to the spectral absorptance for radiation of the same wavelength and incident in the same direction.

It is emphasized, however, that in order to determine the absorptance of an opaque surface from its reflectance, it is necessary to measure the total reflectance, including both the specular and the diffuse components. Values of absorptance and emissivity calculated from the reflectance values of Gates and Tantraporn, and quoted by some authors (Knoerr and Gay 1965; Turrell, Austin, and Perry 1962; Turrell and Austin 1965), can be correct only if the diffuse component of the reflected radiation is negligible for leaves.

We have had available an infrared reflectometer suitable for measuring total spectral reflectances for wavelengths up to $12 \mu \mathrm{~m}$, and less conveniently up to $14 \mu \mathrm{~m}$, and in this paper report measurements made with it on leaves from 47 plant species.

II. Method of Measurement

The infrared reflectometer, developed by Blevin and Brown (1965), was used in conjunction with a Leiss double monochromator having sodium chloride prisms and, as alternative sources, a Nernst glower and a tungsten filament lamp. A disk of 5 mm diameter was removed by a cork-borer from the leaf under investigation and stuck with a non-toxic, water-soluble glue to a nickel-plated sample holder located at the first focus of the spheroidal mirror in the reflectometer. A central area of the sample, about 1 by 0.5 mm , was irradiated with monochromatic radiation incident at 10° to the normal, the spheroidal mirror collecting both the specular and diffuse components of the reflected radiation and focusing them on a bolometer at the second focus. The reflectometer was calibrated by substituting for the leaf sample a small front-surface mirror of evaporated aluminium, whose infrared spectral reflectance curve was known. The spectral bandwidth of the incident beam, at half peak intensity, ranged from a minimum value of about $0 \cdot 1 \mu \mathrm{~m}$ at the wavelength $2 \mu \mathrm{~m}$ to a maximum of $0 \cdot 3 \mu \mathrm{~m}$ at $6 \mu \mathrm{~m}$.

Each set of measurements occupied up to about 40 min after removal of the disk from the leaf, during which time the sample was exposed to ambient atmospheric conditions. Over the course of the project the laboratory temperature varied within the range $20-24^{\circ} \mathrm{C}$, and the relative humidity within the range $50-80 \%$. The power of the incident beam of radiation was of the order of $1 \mu \mathrm{~W}$ and heating of the sample was therefore negligible.

In order to check that the sample disks did not deteriorate too rapidly, a preliminary test was carried out with a leaf of Phaseolus vulgaris (French bean). Reflectance measurements made at the wavelengths 6 and $10 \mu \mathrm{~m}$ within 1 min after removal of a disk from its leaf, and repeated at intervals, showed no change over a period of 2 hr .

To check on the opacity of leaves at wavelengths greater than $2 \mu \mathrm{~m}$, reflectance measurements at several wavelengths were made on a thin bean leaf of thickness
Angle of incidence 10°. - indicates that the measurement was not made

Plant Species	$\begin{gathered} \text { Leaf } \\ \text { Surface } \end{gathered}$	Reflectance at Wavelength ($\mu \mathrm{m}$)																
		$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 8$	$3 \cdot 0$	$4 \cdot 0$	5•0	$6 \cdot 0$	$7 \cdot 0$	$8 \cdot 0$	9•0	$10 \cdot 0$	$11 \cdot 0$	$12 \cdot 0$	$13 \cdot 0$	$14 \cdot 0$
Agapanthus umbellatus	Upper	0.07	$0 \cdot 14$	$0 \cdot 14$	0.05	$0 \cdot 04$	$0 \cdot 04$	0.05	$0 \cdot 04$	0.05	0.03	$0 \cdot 03$						
Agave attenuata	Upper	0.02	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	0.01	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 01$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 02$	0.01	-	
Arachis hypogaea (peanut)	Upper	0.06	$0 \cdot 14$	$0 \cdot 10$	$0 \cdot 04$	$0 \cdot 02$	0.01	0.03	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	0.02	0.02	$0 \cdot 04$	0.02	0.02	-	
	Lower	0.04	$0 \cdot 17$	$0 \cdot 13$	0.07	0.02	0.02	0.05	$0 \cdot 03$	$0 \cdot 02$	0.01	0.01	$0 \cdot 02$	0.05	0.02	$0 \cdot 02$	-	
Atriplex nummularia (saltbush)	Upper	0.09	$0 \cdot 13$	$0 \cdot 12$	$0 \cdot 10$	0.07	$0 \cdot 04$	0.08	$0 \cdot 06$	$0 \cdot 05$	0.05	0.04	$0 \cdot 04$	$0 \cdot 06$	0.05	0.03	$0 \cdot 02$	$0 \cdot 02$
	Upper*	$0 \cdot 32$	$0 \cdot 33$	$0 \cdot 27$	$0 \cdot 26$	$0 \cdot 14$	$0 \cdot 06$	$0 \cdot 16$	$0 \cdot 16$	0.06	0.07	0.07	$0 \cdot 06$	$0 \cdot 09$	0.09	0.08	$0 \cdot 07$	$0 \cdot 06$
	Lower	-	-	-	-	-	-	-	-	-	-	0.05	-	$0 \cdot 06$	-	$0 \cdot 04$	-	-
Avicennia marina	Upper	0.03	0.05	0.05	0.03	0.03	$0 \cdot 04$	0.04	$0 \cdot 03$	0.03	0.04	0.03	0.05	0.04	$0 \cdot 04$	$0 \cdot 04$	-	
var. resinifera	Lower											0.01		0.03		$0 \cdot 02$		
Citrus limon (lemon)																		
Juvenile leaf	Upper	0.15	$0 \cdot 23$	$0 \cdot 16$	0.08	0.04	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	0.05	0.05	$0 \cdot 04$	0.05	0.01	$0 \cdot 02$
Mature leaf	Upper	0.08	$0 \cdot 15$	$0 \cdot 09$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	0.05	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 04$	0.05	$0 \cdot 02$	$0 \cdot 01$	0.01
	Lower	0.21	$0 \cdot 29$	$0 \cdot 23$	$0 \cdot 13$	$0 \cdot 04$	$0 \cdot 03$	0.08	$0 \cdot 06$	$0 \cdot 03$	$0 \cdot 03$	0.03	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 06$	0.05	$0 \cdot 02$	$0 \cdot 03$
Citrus reticulata (mandarin)	Upper	0.07	$0 \cdot 13$	$0 \cdot 11$	$0 \cdot 04$	0.03	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	-	-
Epiphyllum sp. (succulent stem)	Upper	$0 \cdot 04$	$0 \cdot 04$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	0.02	0.03	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 02$	$0 \cdot 04$	-	
Eucalyptus tetraptera	Upper	0.03	0.05	$0 \cdot 04$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 01$	0.01	$0 \cdot 01$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 03$					
Gazania hybrid	Upper	0.03	0.07	$0 \cdot 06$	0.03	0.03	$0 \cdot 05$	0.04	$0 \cdot 04$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	0.04	0.03	-	-
	Lower	$0 \cdot 44$	$0 \cdot 47$	$0 \cdot 45$	$0 \cdot 38$	$0 \cdot 18$	$0 \cdot 02$	0.30	0.27	$0 \cdot 09$	$0 \cdot 06$	$0 \cdot 05$	$0 \cdot 02$	$0 \cdot 06$	0.08	0.08	-	-
	Lower \dagger	0.08	$0 \cdot 16$	$0 \cdot 16$	$0 \cdot 10$	$0 \cdot 04$	$0 \cdot 02$	$0 \cdot 09$	$0 \cdot 07$	$0 \cdot 02$	$0 \cdot 04$	$0 \cdot 03$	0.03	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	-	
Macrozamia communis	Upper	0.07	$0 \cdot 13$	$0 \cdot 12$	$0 \cdot 06$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	0.03	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 02$	-	
Monstera deliciosa (tropical climber)																		
Mature leaf	Upper	0.05	$0 \cdot 12$	$0 \cdot 11$	0.04	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	0.03	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 03$	-	-
Juvenile leaf	Upper	-	-	-	-	-	-	-	-	-	-	$0 \cdot 03$	-	$0 \cdot 04$	-	$0 \cdot 01$	-	-
Pennisetum clandestinum	Upper	0.07	$0 \cdot 13$	$0 \cdot 12$	0.05	$0 \cdot 02$	$0 \cdot 01$	$0 \cdot 02$	$0 \cdot 01$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 01$	0.01	$0 \cdot 01$				
Phaseolus vulgaris	Upper	0.05	$0 \cdot 12$	$0 \cdot 10$	$0 \cdot 04$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 04$	$0 \cdot 02$	$0 \cdot 01$						
cv. Brown Beauty	Lower	0.08	$0 \cdot 15$	$0 \cdot 14$	0.07	$0 \cdot 03$	$0 \cdot 01$	0.05	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 02$	0.01		
Saccharum officinarum (sugar-cane)	Upper	0.09	$0 \cdot 17$	$0 \cdot 14$	0.07	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 04$	$0 \cdot 03$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$	0.02	$0 \cdot 02$	$0 \cdot 02$	-	

Table 2
total spectral reflectances of leaves at 8, 10, and $12 \mu \mathrm{~m}$ Angle of incidence 10°. - indicates that the measurement was not made

Plant Species	Leaf Surface	Reflectance at		
		$8 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$
ANGIOSPERMAE DICOTYLEDONEAE Acacia aneura		0.05	$0 \cdot 05$	$0 \cdot 04$
	Upper	0.05	0.05	0.04
Banksia serrata	Upper	$0 \cdot 03$	$0 \cdot 05$	$0 \cdot 04$
Brassica oleracea				
Waxy leaf	Upper	$0 \cdot 01$	$0 \cdot 01$	$0 \cdot 02$
Waxy leaf	Lower	0.01	$0 \cdot 02$	$0 \cdot 02$
Green leaf	Upper	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$
Camellia japonica cv. Don Pedro	Upper	0.02	$0 \cdot 04$	0.05
Cerastium tomentosum	Upper	$0 \cdot 04$	$0 \cdot 06$	$0 \cdot 04$
Chenopodium album	Upper	-	$0 \cdot 03$	-
Eucalyptus blaxlandii	Upper	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 04$
Eucalyptus cinerea (glaucous)	Upper	-	$0 \cdot 03$	-
Eucalyptus nitens (green)	Upper	-	$0 \cdot 03$	-
Eucalyptus niphophila (glaucous) 5500 ft , Mt. Kosciusko	Upper	-	$0 \cdot 06$	-
2000 ft , Goulburn	Upper	-	0.04	-
Eucalyptus saligna (glaucous)	Upper	- 0	$0 \cdot 05$	- 0
Homalocladium platycladum	Upper	0.03	0.03	$0 \cdot 04$
Kalanchoe sp.	Upper	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$
Lychnis coronaria	Upper	$0 \cdot 02$	$0 \cdot 07$	$0 \cdot 07$
Magnolia grandiflora	Lower	$0 \cdot 03$	0.04	$0 \cdot 04$
	Upper	$0 \cdot 04$	$0 \cdot 06$	0.05
Mentha rotundifolia	Upper	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 02$
Nicotiana tabacum cv. Hicks	Upper	$0 \cdot 02$	$0 \cdot 03$	0.01
Nymphaea sp.	Upper	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 01$
Populus alba	Upper	-	0.05	-
	Lower	-	$0 \cdot 05$	- 0
Protea grandiflora	Upper	$0 \cdot 03$	$0 \cdot 01$	$0 \cdot 01$
Ruscus aculeatus	Upper	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$
monocotyledoneae	Upper	0.02	$0 \cdot 03$	$0 \cdot 01$
Eichhornia crassipes	Upper	0.02	0.02	0.01
Spinifex hirsutus	Upper	0.02	0.02	0.02
	Lower	$0 \cdot 02$	$0 \cdot 06$	$0 \cdot 05$
Trachycarpus fortunei	Upper	$0 \cdot 05$	0.05	$0 \cdot 05$
Xanthorrhoea resinosa	Upper	$0 \cdot 02$	$0 \cdot 03$	$0 \cdot 03$
GYMNOSPERMAE Encephalartos altensteinii	Upper	$0 \cdot 04$	$0 \cdot 05$	$0 \cdot 04$
filicinae Angiopteris sp.	Upper	0.01	$0 \cdot 02$	$0 \cdot 02$
Marsilea drummondii	Upper	$0 \cdot 02$	$0 \cdot 02$	$0 \cdot 02$
Phyllophyte Parmelia sp.	Upper	$0 \cdot 03$	$0 \cdot 04$	$0 \cdot 03$
Fruits Citrus sinensis	Outer skin Outer skin	$\begin{aligned} & 0.03 \\ & 0.04 \end{aligned}$	0.03 0.04	0.04 0.04
Pyrus malus	Outer skin	$0 \cdot 04$	$0 \cdot 04$	0.04

about 0.2 mm , first with the sample mounted over the opening of a small blackened cavity, and second with it glued to the usual nickel-plated sample holder. The results were not affected by the change of background.

III. Materials and Results

The leaves were obtained during the summer months of early 1966 from the University of New South Wales garden, the Sydney Botanic Gardens, and the Royal National Park of New South Wales, usually being removed from their plants only a few hours before measurement. Except where stated otherwise the sample disks were cut from mature leaves (fourth to sixth leaf from the terminal bud), at sites with least veins present.

For 15 plant species (Table 1) spectral reflectances were measured over the wavelength range $2-12 \mu \mathrm{~m}$ or $2-14 \mu \mathrm{~m}$, at $0 \cdot 2 \mu \mathrm{~m}$ intervals from 2 to $3 \mu \mathrm{~m}$ where rapid variations with wavelength were common, and at $1 \mu \mathrm{~m}$ intervals from $3-14 \mu \mathrm{~m}$. Measurements on a further 32 species (Table 2) were restricted to the wavelengths 8,10 , and $12 \mu \mathrm{~m}$ within the long-wave atmospheric "window". The tabulated values of reflectance are considered to be correct to within about $\pm 10 \%$ of the reflectance value or $\pm 0 \cdot 01$, whichever is the larger.

IV. Discussion

The results for all 15 species examined in detail are similar in so far as the spectral reflectance values at wavelengths greater than $3 \mu \mathrm{~m}$ are low. Most of the species show a considerably higher reflectance peak between the wavelengths 2 and $3 \mu \mathrm{~m}$, but this is not the case with Agave attenuata, Avicennia marina, Epiphyllum sp., and Eucalyptus tetraptera.

As usually only one leaf from each plant species was measured, it was of interest to investigate differences between leaves of different ages from the same species. Spectral reflectance curves measured for juvenile, mature, and old yellowed bean leaves (Fig. 1) were found to be very similar, though the peak reflectance value at the wavelength $2 \cdot 2 \mu \mathrm{~m}$ decreased with aging of the leaf.

Liquid water strongly absorbs radiation of wavelength greater than $1.5 \mu \mathrm{~m}$, its absorption spectrum having maxima at $2,3,6$, and $15 \mu \mathrm{~m}$. It might be expected a priori that the presence of water would have considerable influence on the spectral reflectance curves of leaves, and the observed absorption bands for bean leaves (Fig. 1) and several other species (Table 1) are consistent with this suggestion. In order to test further the influence of water, a reflectance curve was measured (Fig. 1) for a mature bean leaf which had been dried in a fan-oven at $60^{\circ} \mathrm{C}$ for 2 days. The drying markedly increased the reflectance throughout the spectral range, but the absorption bands remained. The effect of drying a leaf of Atriplex nummularia was also investigated (Table 1) and found to be qualitatively very similar.

The numerous results for the $8-12 \mu \mathrm{~m}$ region (Tables 1 and 2) show only small variations between species, all reflectances at the wavelength $10 \mu \mathrm{~m}$, for example, lying within the range $0.01-0.07$. Most of the leaves with the higher reflectance values had surface structures which could account for this behaviour. For example,
a thick mat of hairs was present on the upper surfaces of leaves of Cerastium tomentosum and Lychnis coronaria, and on the lower surfaces of leaves of Gazania hybrid and Spinifex hirsutus; and dry vesicular tissues (scale) were observed on the cuticular and epidermal layers of A. nummularia. Investigations with two species, Agapanthus umbellatus and Gazania hybrid, showed that stripping off the cuticle and epidermal cells reduced the leaf reflectances markedly, and confirmed that these outer cells have a major influence on the reflectances of leaves.

For several plant species reflectances were measured for both the upper and lower surface of the leaf (Tables 1 and 2), the differences observed being neither marked nor systematic. Gates and Tantraporn (1952), on the other hand, found that the upper surfaces tend to have considerably higher values of infrared reflectance than the lower surfaces. However, their conclusion was based on measurements of specular reflectance for a 78° angle of incidence, which were more likely to be indicative of the diffusing properties of the surfaces than of their absorption properties.

With four plant species the reflectometer was used to measure the directional distribution of infrared radiation reflected by the leaves. The leaf sample was irradiated at 10° incidence as previously, and measurements were made of the radiation
Table 3
angular distribution of infrared radiation reflected from leaf surfaces Angle of incidence 10°

Plant Species	Surface	Radiant Flux in each Angular Zone (expressed as a fraction of the total for four zones)							
		Wavelength $=2 \mu \mathrm{~m}$				Wavelength $=10 \mu \mathrm{~m}$			
		$10-30^{\circ}$	30-45 ${ }^{\circ}$	45-60 ${ }^{\circ}$	$>60^{\circ}$	$10-30^{\circ}$	30-45 ${ }^{\circ}$	$45-60^{\circ}$	$>60^{\circ}$
-	Specular reflector	$1 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	0.00	$1 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$
-	Perfect diffuser	$0 \cdot 22$	$0 \cdot 25$	$0 \cdot 25$	$0 \cdot 27$	$0 \cdot 22$	$0 \cdot 25$	$0 \cdot 25$	$0 \cdot 27$
Citrus limon Juvenile leaf	Upper	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 9$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 0$
Mature leaf	Upper	$0 \cdot 4$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 9$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 0$
Gazania hybrid	Lower	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 2$
Monstera deliciosa Juvenile leaf	Upper	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 8$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 0$
Mature leaf	Upper	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 2$	0.5	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 2$
Phaseolus vulgaris cv. Brown Beauty	Upper	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 6$	$0 \cdot 1$	$0 \cdot 0$

reflected in each of the angular zones $10-30^{\circ}, 30-45^{\circ}, 45-60^{\circ}$, and $>60^{\circ}$, the angles being measured from the incident beam. Measurements at angles less than 10° were not practicable. For perfectly specular surfaces all the reflected radiation would fall within the $10^{\circ}-30^{\circ}$ zone, but for perfect diffusers it can be calculated that the distribution of radiation among the four zones would be approximately uniform, as shown in Table 3. The measurements on leaves were made with radiation of wavelengths 2 and $10 \mu \mathrm{~m}$ (Table 3). All the leaf surfaces examined behaved as rather diffuse reflectors at the shorter wavelength but, with the exception of the hairy lower surface of Gazania hybrid, they were less effective diffusers at $10 \mu \mathrm{~m}$. The behaviour of Phaseolus vulgaris in concentrating a large fraction of the reflected radiation in the $30^{\circ}-45^{\circ}$ zone is thought to be due to the microtopography of the leaf surface.

V. Conclusions

Within the wavelength range $3-14 \mu \mathrm{~m}$, most of the reflectance values measured for natural leaves were less than $0 \cdot 05$ and, with the exception of some of those for the hairy lower surfaces of leaves of Gazania hybrid, all were less than $0 \cdot 10$. In the $2-3 \mu \mathrm{~m}$ range, higher values of reflectance were commonly obtained.

As the results reported are values of total spectral reflectance for 10° incidence, the difference between each value and unity equals the spectral emissivity of the leaf in a direction at 10° to the normal. The wavelength range investigated includes the principal infrared "window" in the atmosphere, but is insufficient for values of total emissivity to be obtained by integration.

Leaves should not be regarded as perfectly specular or diffuse reflectors in the infrared region. The measurements of the directional distribution of the reflected radiation suggest that there may frequently be a tendency for the specular component to become more pronounced with increasing wavelength.

VI. Acknowledgment

The authors wish to thank Professor H. N. Barber, Botany Department, University of New South Wales, for his suggestions and interest in this work.

VII. References

[^1]
[^0]: * School of Biological Sciences, University of New South Wales, Kensington, N.S.W.; present address: Agriculture Department, Jesselton, Sabah, Malaysia.
 \dagger Division of Physics, CSIRO, National Standards Laboratory, Sydney.

[^1]: Billings, W. D., and Morris, J. J. (1951).-Am. J. Bot. 38, 327.
 Birkebak, R., and Birkebak, R. (1964).-Ecology 45, 646.
 Blevin, W. R., and Brown, W. J. (1965).—J. scient. Instrum. 42, 385.
 Coblentz, W. W. (1913).-Bull. Bur. Stand., Wash. 9, 283.
 Gates, D. M., Keegan, H. J., Schleter, J. C., and Wedner, V. R. (1965).—Appl. Optics 4, 11. Gates, D. M., and Tantraporn, W. (1952).-Science, N.Y. 115, 613.
 Knoerr, K. R., and Gay, L. W. (1965).-Ecology 46, 17.
 Moss, R. H., and Loomis, W. E. (1952).—Pl. Physiol., Lancaster 27, 370.
 Shull, C. A. (1929).-Bot. Gaz. 87, 583.
 Turrell, F. M., and Austin, S. W. (1965).-Ecology 46, 25.
 Turrell, F. M., Austin, S. W., and Perry, R. L. (1962).-Am. J. Bot. 49, 97.

