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Abstract 

Moran (1964) proved three negative results for the standard two-locus model 
of population genetics: (1) that mean fitness was not a function of the allelic 
frequencies alone; (2) that stationary states of the population do not, in general, 
correspond to stationary values of the mean fitness; (3) the mean fitness of a 
population may decrease from one generation to the next. Ewens (1969a, 1969b) 
showed that for an additive fitness (i.e. non-epistatic) model none of these results 
could apply. The present paper shows the crucial role of the non-epistatic hypothesis 
in the establishing of Ewens' results. 

1. INTRODUCTION 

We consider the standard two-locus diploid model. Two loci each have two 
alleles. We term these A,a and B,b respectively. The fitnesses of the various geno-

TABLE 1 

FITNESS COEFFICIENTS IN THE GENERAL CASE 

AA Aa aa 

BB Wll W14 W33 

Bb W12 W14 = W23 W34 

=w=l 
bb W22 W24 W44 

types which may be formed are given in Table 1. We make the conventions that 

(1) 

and 

W14 =W23 =W. (2) 

We may, without loss of generality, set W = 1, as the only case in which this cannot 
be done (w = 0) is trivial anyhow. This further convention will be adopted. 
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The four possible gametotypes AB, Ab, aB, ab have frequencies Xl, X2, X3, X4 

respectively and 
4 

~ Xi = l. 
i = 1 

A quantity D is defined by 
D = XIX4 -X2X3. 

We further define 
4 

Wi = ~ WijXj, 
j = 1 

and 
4 

W = ~ WiXi. 
i = 1 

The coefficient of recombination between the loci is taken to be R. 

The system follows the standard equations 

wll.Xt = Xi(Wi-W)-8iRD, 

where 8t is defined as follows: 

Equilibrium is attained if 

8. = { 1 if i = 1,4 
~ -1 if i = 2,3 

II. EPISTASIS 

The quantities Ei defined by 
4 

Ei = ~ 8 jW ij 
j = 1 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

were first introduced by Fisher (1918). They are termed the "coefficients of epistasis". 
We shall see below that they measure the extent to which the fitnesses are not 
additive over the loci. Set 

Consider now the equations 
UI+VI = W'll 

U2+Vl = W'12 

U3+VI = W'22 

Ul +V2 = W'13 

::!~:: ::~: = 1 jf 
UI+V3 = W'33 

U2+ V3 = W'34 

U3+V3 = W'44 

(11) 

(12) 

We seek to solve these for the six quantities ui, Vi. This may be done as follows. 
First set u2 = v2 = t. Substitute progressively into the equations. Unique values 
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are obtained for Ul, Ua, VI, va- The system of nine equations in six unknowns is not in 
fact overdetermined, as the four equations 

UI+VI = W'll 

Ua+VI = W'22 

UI+Va = w'aa 
ua+va = W'44 

which are not required for the solution are satisfied automatically in view of the 
relations 

4 

1: SjW'ij = 0, (13) 
j=l -

which follow from equations (lO), (11). 
The system in fact is actually underdetermined in that U2, V2 are arbitrary 

provided that 

The convention U2 = V2 = t is a convenient one to adopt. 
The fact that equations (12) may be solved for the ui, Vi demonstrates the 

complete equivalence of the quantities W'ij and the additive fitnesses assumed by 
Ewens (1969a, 1969b). In particular if EI = E2 = Ea = E4 = 0, fitness is additive. 
Further, if fitnesses are additive--Le. as given in Table 2, all the quantities Ei are 

TABLE 2 
FITNESS COEFFICIENTS IN THE NON-EPISTATIC CASE 

BB 

Bb 

bb 

AA Aa aa 

zero. Thus Ewens' additive fitness model may be described as non-epistatic. In the 
more general model, the quantities Ei measure the extent to which additivity is not 
achieved. In this case, equations (11) determine the values of the Ei uniquely. 

III. RESULTS OF MORAN AND EWENS 

Moran (1964) has demonstrated that in general: 
(1) w cannot be expressed as a function of P (=XI +X2), P (=XI +xa) alone; 
(2) the solutions of equations (9) do not, in general, occur at stationary values 

ofw; 
(3) equations (7) need not lead to increase in the value of w from one generation 

to the next. 

These results show the inapplicability of Wright's (1932) concept of the "adaptive 
topography" to the general two locus model. 

Ewens (1969) has shown that when fitnesses are assigned as in Table 2: 
(1) w = w(P,p); 
(2) w is stationary at equilibrium; 
(3) w increases from one generation to the next. 
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Thus the adaptive topography concept is completely valid when epistasis is not 
present. 

A number of attempts have been made to extend this result but with very little 
success. See, in this connection, the papers by Kimura (1966), Moran (1967), Ewens 
(1969b), and Arunachalam (1970). 

The purpose of this paper is to demonstrate that except for a few trivial and 
biologically implausible cases, Ewens' results cannot apply to any epistatic model. 
Specifically we prove: 

(1) that mean fitness cannot be a function of allelic frequencies alone unless all 
the coefficients of epistasis are zero (Section V); 

(2) that a necessary condition for w to be stationary at a polymorphic 
equilibrium is that an exact equality relation hold between the four 
coefficients of epistasis (Section VI); 

(3) if epistasis is present, there are necessarily situations from which w will 
decrease unless: 

(i) w has no polymorphic maxima; 

(ii) equations (7) have no stable polymorphic solution (Section VII). 

These results are converses, in the mathematical sense of that term, of Ewens' 
results. They will be referred to as such in the sections to follow. 

IV. MODIFICATION OF THE BASIC EQUATIONS 

We insert equations (11) into equations (5), (6). There results: 

w, = w',+8,E,x" 
where 

and 

where 

and 

4 

w', = I: W',jXj, 
j = 1 

w = w'+@" 

4 

w' = I: W'1,X1" 
i=1 

4 

@" = I: 81,Eix2i 
i=1 

With this notation, the governing equations of the system become 

Equilibrium is achieved when 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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V_ THE CONVERSE OF EWENS' FIRST RESULT 

We show that the condition 

(21) 

is necessary if w is to be a function of P,p alone_ Ewens (1969a, 1969b) has already 
demonstrated the sufficiency of condition (21). 

w (= w' +@") is a function of three independent variables as the four quantities 
Xi are connected by equation (3). We may choose these variables to be P,p and 
Xl +X4. For w to depend upon P,p alone, we must show w to be independent of 
Xl +X4. Ewens has already shown that w' is independent of Xl +X4. Thus we need 
examine only the quantity @". 

It may readily be shown that 

@" = E I{1-P -p - (Xl +X4)}2 - E 2{1 + P -p -(Xl +X4)}2 

= -Ea{1-P+p-(XI +x4)}2+E4{1-P-p+(XI +X4)}2 

= f(P,p)-2(XI+X4) {EI(1-P-p)-E2(1+P-p) 

- Ea(1-P+p)-E4(1-P-p)}+(XI+X4)2(EI-E2-Ea+E4). 

The right-hand side of this equation can only be independent of Xl +X4 if 

is identically zero, and if 

The first condition reduces to EI-E4 = 0, E2 = 0, Ea = 0, and equation (21) 
readily follows. 

VI. THE CONVERSE OF EWENS' SECOND RESULT 

We now consider the question of whether w can attain a stationary value at 
equilibrium. 

In the trivial cases R = 0, and w = 0, this will necessarily be achieved as a 
corollary of a result due to Scheuer and Mandel (1959). It is also possible that 
equilibria of the two-locus model may coincide with stationary values of w in cases 
in which one allele becomes extinct (see Section VII below). We here show that fully 
polymorphic equilibria cannot, in practice, be stationary points of w otherwise. 

It may readily be shown that if mean fitness is to be stationary, we must 
satisfy the equations 

(22) 

at a polymorphic equilibrium. By equations (9) therefore we must have at equilibrium 
D = ° if fitness is to be stationary. Thus, by equations (20), we require 

(23) 

at equilibrium. 
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Equations (23) may be written 

(24) 

which are best solved for the equilibrium values of Xi by rewriting them as 

(25) 

and using the auxiliary equation (3). This gives a system of five linear equations in 
the five unknowns Xi, A. A is interpretable as the equilibrium value of w. 

The system composed of equations (25), (3) may be solved by the application 
of Cramer's rule. In general it possesses a unique solution. In this case and if this 
solution satisfies the constraints Xi > 0 for all i, then a stationary value of w may be 
attained. However, the equilibrium values must also satisfy the equation D = 0, 
which may be translated into a (complicated) equality which must hold among the 
fitness coefficients. This possibility may be neglected as implausible due to the 
necessity of satisfying a precise equality. The assumption that such equalities do not 
hold has been termed by Hardin (1960) the "axiom of inequality". It does not hold 
in certain cases where we have good reason for postulating an equality. In the present 
instance, the case El = E2 = E3 = E4 = 0 provides a case in which equality holds. 
We have no reason, however, to postulate equality relations between the quantities 
Ei in the case in which they do not vanish, and thus the axiom will be taken to apply 
when epistasis is present. Where the solution involves a negative value of one of the 
Xi, a stationary value of w cannot be attained even in theory. 

The axiom of inequality may be used to exclude cases in which equations (25) 
have no solution or infinitely many solutions. 

The use of the axiom of inequality to arrive at this result does not preclude the 
possibility of certain special cases providing examples of equilibrium at stationary 
values of w. Indeed, one such is known. It is a ready corollary of work by Moran 
(1967) that in the case where the fitnesses are multiplicative, there must exist one 
equilibrium for which w is stationary. We may expect that similar cases may 
occasionally be found, but they must necessarily be extremely rare. 

VII. THE CONVERSE OF EWENS' THIRD RESULT 

It is common to represent gamete frequencies as points in a tetrahedron (see 
Karlin and Feldman 1970). Consider the point P of this tetrahedron for which w is 
maximized. This point is either (a) an interior point, (b) a point on a face of the 
tetrahedron, (c) a point on an edge of the tetrahedron, or (d) a corner point. 

In case (a), P will not in general be an equilibrium point by the previous section 
and in case (b), P cannot be an equilibrium as equations (9) cannot hold. If a 
population structure is initially represented by P therefore, it will alter in such a way 
that the point representing it moves away from P towards a position of true 
equilibrium. This initial motion necessarily entails decrease of w. 

In case (c), the matter is more complicated. Edge equilibria entail the extinction 
of one of the alleles. Suppose therefore that w is maximized on an edge. Then P, the 
point of maximization is necessarily an edge equilibrium at which one allele (a, say) is 
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absent. Let the equilibrium values of Xl, X2 be p, q respectively, and perturb the 
equilibrium by altering X2 to q-x and letting X3 become X, where X is small. Set 

Under these conventions, the equations of motion become 

W~XI = Xp(W-W3-Fq)+Rqx 
W~X2 = xq(W-W3+Fp)-Rqx 
W~X3 = x(W3- W)-Rqx 
W~X4 = Rqx 

(26) 

(27) 

(28) 

(29) 

The allele a will increase in frequency if ~(X3+X4) is positive, i.e. if W 3 > W. How
ever, this condition is inconsistent with the assumption that W was a maximum 
value of w. Thus a stable equilibrium can maximize w if and only if one allele becomes 
extinct. 

Case (d) is a special case of case (c) in which two alleles become extinct. The 
analysis is the same. 

Consider now cases in which w has edge maxima only. If a stable equilibrium 
of equations (7) lies in the interior of the tetrahedron, then contour surfaces of w 
may be drawn in the neighbourhood of the point Q representing this equilibrium. 
For all points in some neighbourhood of Q the trajectory representing the solutions of 
(7) will pass through Q. Since, by the previous section, Q is not a stationary point of 
W, w must decrease along some of these trajectories. 

Thus, we find that if w has stationary points in the interior of the tetrahedron 
or if equations (7) have equilibria there, there necessarily exist conditions under 
which w may decrease. However, if no polymorphic equilibria of equations (7) exist 
and if w has no internal maxima, this conclusion need not follow. This exceptional 
case is one in which one allele or other necessarily becomes extinct. 

VIII. CONOLUSIONS 

The three situations demonstrated by Moran (1964) have been shown by 
Ewens (1969a, 1969b) to occur if epistasis is absent. The present paper shows that: 

(1) If epistasis is present, gamete frequencies can never be expressed in terms of 
allelic frequencies only; 

(2) If epistasis is present, w can achieve a polymorphic stationary value at 
equilibrium only in a special and biologically implausible case; 

(3) If epistasis is present, there are always population structures for which w 
decreases under natural selection, except possibly in the case where one of 
the alleles becomes extinct. 

These results are converses, in the mathematical sense, of the three results 
proved by Ewens (1969a). Result (1) alone suffices to show that the concept of an 
adaptive topography in the sense of Wright (1932) can never be applied to an 
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epistatic model. Ewens (1969a) has shown that this concept necessarily applied in the 
non-epistatic case. A similar dichotomy applies, with the exceptions noted above, to 
the maximization of mean fitness. 

It is a common statement that recombination prevents the application of the 
fitness maximization and adaptive topography concepts. This is true in the sense that 
for a general model in which R =1= 0, neither concept can be applied. However, even if 
R = ° both concepts apply for non-epistatic cases. As soon, however, as epistasis is 
allowed, both concepts become inapplicable. 

It thus follows that the failure of both the adaptive topography and fitness 
maximization concepts in the standard two-locus model is more properly described 
as being due to epistasis then to recombination. It would be of interest to know if this 
conclusion applies more generally. 
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