Natural Selection and the
 Maintenance of Colour Pattern Polymorphism in the Australian Plague Locust Chortoicetes terminifera

John M. Dearn ${ }^{\text {A }}$ and Richard A. H. Davies ${ }^{\text {B }}$
A Department of Genetics, University of Melbourne, Parkville, Vic. 3052.
${ }^{\text {B }}$ ICI Plant Protection Division, Fernhurst, Haslemere, Surrey, U.K.

Abstract

Twelve samples of C. terminifera from seven locations in eastern Australia were analysed for colour pattern polymorphism. Although there was heterogeneity between the samples the overall frequencies of the colour pattern genotypes were very similar. Males and females showed consistent differences in their genotype frequencies and this is presumed to reflect differential selection between the two sexes. A comparison between observed genotype frequencies and those expected under random mating and in the absence of selection revealed large differences. In particular, genotypes heterozygous for two dominant genes were consistently underrepresented. While these differences could result from non-random mating it is argued that they are more likely to be due to viability differences between the genotypes.

Introduction

The most successful attempts to analyse the action of natural selection in wild populations have come from the study of colour pattern polymorphisms in various groups of animals (Ford 1975). Most colour pattern polymorphisms that have been studied in detail appear to be balanced: that is the selective forces are such that allelic variants are maintained in populations in a state of dynamic equilibrium. While the relevance of such systems to our understanding of the action of selection in general remains unclear (Lewontin 1974) they do provide valuable insights into population processes.

Many species of Orthoptera are known to exhibit colour pattern polymorphisms but only a limited number of studies have been carried out on the genetic basis of this variation (Nabours 1929; Sansome and La Cour 1935; Creighton and Robertson 1941; King and Slifer 1955; Byrne 1967a; Dearn 1981; Gill 1981) and few attempts have been made to examine the action of natural selection. A notable exception is the work of Fisher (1939) on colour pattern polymorphism in wild populations of the grouse locust Paratettix cucullatus (formerly P. texanus) which was one of the first demonstrations of the strength of selective forces in natural populations.

The existence of colour pattern morphs which are common to different but related acridid species (Vorontzovsky 1928) has been taken as evidence that the morphs are genetically determined (Key 1954). This has been confirmed in one system by Byrne (1967a) who studied the inheritance of the colour pattern varieties called albomedia, nigrovirgata, trilineata and rubiginosa which are seen in the Australian plague locust, Chortoicetes terminifera (Walk.) (Key 1954). These varieties are members of a series
of colour pattern varieties seen in C. terminifera and in the eight species of the closely related genus Austroicetes (Key 1954). Five of the varieties are identical to those described by Vorontzovsky (1928) in his description of variation in 48 species of acridids and Key retained the original names for the Australian material as well as designating new varieties.

Fig. 1. Map of eastern Australia showing the location of the seven sites.

Byrne (1967a) showed that the inheritance of colour pattern variation seen in C. terminifera could be explained by the segregation of four alleles ($F^{a}, F^{n}, F^{t}, F^{r}$) at an autosomal locus. Of particular importance is the fact that with one exception the heterozygotes are distinguishable both from each other and from the homozygotes on the basis of slight variation of the colour patterns. The system represents, therefore, an excellent opportunity to examine the action of natural selection on a polymorphic locus in natural populations. This paper presents the results of an analysis of colour pattern variation in C. terminifera in samples from seven widely distributed locations in eastern Australia.

Materials and Methods

Collections of C. terminifera were made from swarms at seven locations (Fig. 1) and are grouped into 12 samples (Table 1), six separate samples being taken from the Longreach area. Details of
the exact location of each sample site are given in an Accessory Publication.* Most samples consisted of material collected using a net mounted on the front of a vehicle. The samples from Longreach E, Channel Country, Windorah and Griffith contain some material caught in light traps. Comparison of the colour pattern morph frequencies in samples caught in light traps and nets from the same site showed no significant difference. The Longreach E sample contained some females caught by hand while they were ovipositing. Material was either scored immediately on collection or preserved by drying for scoring at a later time.

Probability levels associated with statistical tests are expressed using the notation ${ }^{*}$ for $0.01<P \leqslant 0.05 ;^{* *}$ for $0.001<P \leqslant 0 \cdot 01 ;^{* * *}$ for $P \leqslant 0 \cdot 001$.

Table 1. Collection dates and sample sizes for the $\mathbf{1 2}$ samples

Sample	Collection dates	Sex	Sample size	Sample	Collection dates	Sex	Sample size
Longreach A	16.ii. 1971	0°	307	Channel Country	22.iii.1972-	0^{*}	370
		아	337		23.iii. 1972	우	313
Longreach B	24.iii.1971-	${ }^{\circ}$	470	Broken Hill	25.iii. 1972	${ }^{\circ}$	213
	30.iii. 1971	우	303			아	150
Longreach C	4.xi. 1971	${ }^{\circ}$	112	Windorah	26.iv.1972-	0^{0}	1048
		아	87		7.v. 1972	ㅇ,	856
Longreach D	27.ii. 1972	0^{*}	208	Griffith	2.xii.1971-	${ }^{\text {a }}$	490
		¢	140		5.xii. 1971	아	155
Longreach E	1.i.1972-	0^{*}	1138	Deniliquin	11.iv. 1972	0^{*}	488
	11.i. 1972	\%	1387			아	392
Longreach F	19.ii.1972-	${ }^{\circ}$	849	Boulia	4.v.1972-	0^{*}	1087
	29.ii. 1972	¢	1095		17.v. 1972	아	1428

Results

The Polymorphic System

Byrne (1967a) recognized nine distinct phenotypes corresponding to nine of the 10 possible genotypic combinations at the F locus, the genotypes $F^{a} F^{a}$ and $F^{a} F^{r}$ being indistinguishable. It is useful, however, to allocate the nine phenotypes to the four varieties described in Key (1954) (Fig. 2). Key (1954) stated '... many apparent intermediates are found, and there appears to be some degree of variability within the limits of each characteristic pattern...' and it was not until the genetic analysis was carried out that the nature of this variation became apparent.

The F^{r} allele is the most recessive of the four alleles and the $F^{r} F^{r}$ phenotype (rubiginosa) is the least conspicuous of the nine colour patterns and appears equivalent to the 'universal recessive' phenotype seen in other polymorphic systems. In this paper, therefore, the F^{r} allele is referred to as being recessive and the F^{a}, F^{n} and F^{t} alleles as being dominant with respect to this colour pattern polymorphism.

Inspection of the genotypic data in the 12 samples (Table 2) reveals obvious differences between the two sexes in every population. In each case the frequency of nigrovirgata is higher in males than females while the frequency of rubiginosa is higher in females than males due to differences in the frequencies of the $F^{n} F^{n}, F^{n} F^{t}, F^{n} F^{r}$ and $F^{r} F^{r}$ genotypes between the sexes. Analyses of the phenotype number for each population using contingency χ^{2} tests (Table 3) show that the differences between

[^0]
albomedia

nigrovirgata

Fig. 2. Drawings of the four colour pattern varieties from Key (1954) together with the phenotypes of the 10 constituent genotypic classes from Byrne (1967a).
males and females are significant in all samples except Griffith and the male and female data have, therefore, been analysed separately.

Allele frequencies were calculated for males and females for the 12 samples. It was assumed that all the $F^{a} F^{a} / F^{a} F^{r}$ individuals were of the genotype $F^{a} F^{r}$ since the low frequency of the F^{a} allele in all samples means that the frequency of $F^{a} F^{a}$ individuals is very low. Estimates of preselection genotype frequencies were obtained by calculating the Hardy-Weinberg equilibrium genotype frequencies from the adult gene frequency estimates. χ^{2} tests show that the differences between the observed genotype numbers and expected genotype numbers are significant for all 12 samples (Table 4).

Viability Estimates for the Different Genotypes

The ratios between the observed and expected genotype frequencies were used to calculate viability estimates for each genotype in both sexes. These were then standardized across genotypes assigning, as is conventional, the genotype with the highest viability of partial fitness value of 1 (Table 5).

These data show apparent large differences between the viabilities of different genotypes in both males and females. The general agreement between the viability estimates obtained from different samples within either sex lends confidence to the conclusion that the observed viability differences are real. The most obvious feature of these data is that in both sexes individuals heterozygous for two different dominant alleles, i.e. genotypes $F^{a} F^{n}, F^{a} F^{t}$ and $F^{n} F^{t}$ have low relative viability. In both males and females the $F^{r} F^{r}$ (rubiginosa) genotype has low viability but this is more marked in males.

Geographic Variation

There are a total of six samples from the Longreach area. Field observations on migration and breeding patterns (Davies, unpublished data; D. P. Clarke, unpublished data) showed that the samples termed Longreach A, B, C and D represent respectively generations 1, 2, 4 and 5 in the Longreach area without any detected immigration from other areas. This is confirmed by χ^{2} contingency analyses which show that the phenotype frequencies in these four samples are independent of sample in both sexes (males, $\chi_{9}^{2}=15 \cdot 81$; females, $\chi_{9}^{2}=2 \cdot 78$). Longreach samples E and F comprise both resident and immigrant individuals because field observations (Davies, unpublished data) showed immigration into the sampled populations of swarming individuals from the Lower Warrego River region to the south-east during the passage of a low pressure trough on 28 and 29 December 1971. χ^{2} contingency tests show that the phenotype frequencies are not independent of sample either with each other (males, $\chi_{3}^{2}=8 \cdot 53^{*}$; females, $\chi_{3}^{2}=8 \cdot 71^{*}$) or with the Longreach A, B, C and D samples (males, $\chi_{15}^{2}=32 \cdot 89^{* *}$; females, $\chi_{15}^{2}=430 \cdot 52^{* * *}$).

The nine samples comprising Longreach A, B, C and D pooled, Longreach E, Longreach F, Channel Country, Broken Hill, Windorah, Griffith, Deniliquin and Boulia were analysed together and χ^{2} contingency tests showed that phenotype frequencies were not independent of sample for either males or females (males, $\chi_{24}^{2}=135 \cdot 12^{* * *}$; females, $\left.\chi_{24}^{2}=583 \cdot 33^{* * *}\right)$.
Table 2. Genotype frequencies in the twelve samples for males and females
Genotype frequencies expected under Hardy-Weinberg equilibrium are given in parenthesis

Sample	Sex	albomedia			nigrovirgata			trilineata		rubiginosa
		$\begin{aligned} & F^{a} F^{a} \\ & F^{a} F^{r} \end{aligned}$	$F^{a} F^{n}$	$F^{a} F^{t}$	$F^{n} F^{n}$	$F^{n} F^{t}$	$F^{n} F^{r}$	$F^{t} F^{t}$	$F^{t} F^{r}$	$F^{r} F^{r}$
Longreach A	$\begin{aligned} & 0 \\ & \text { t } \\ & \text { q } \end{aligned}$	$\begin{gathered} 0 \cdot 0261 \\ 0 \cdot 0119 \\ (0 \cdot 0133) \end{gathered}$	$\begin{gathered} 0 \cdot 0065 \\ 0 \cdot 0030 \\ (0 \cdot 0080) \end{gathered}$	$0 \cdot 0000$ 0.0089 (0.0068)	$\begin{gathered} 0 \cdot 1336 \\ 0 \cdot 1068 \\ (0 \cdot 0816) \end{gathered}$	$\begin{gathered} 0 \cdot 0358 \\ 0 \cdot 0148 \\ (0 \cdot 1391) \end{gathered}$	$\begin{gathered} 0 \cdot 3616 \\ 0 \cdot 2552 \\ (0 \cdot 2686) \end{gathered}$	$\begin{gathered} 0 \cdot 0814 \\ 0 \cdot 0623 \\ (0 \cdot 0575) \end{gathered}$	$\begin{gathered} 0 \cdot 2736 \\ 0 \cdot 3383 \\ (0 \cdot 2188) \end{gathered}$	$\begin{gathered} 0 \cdot 0814 \\ 0 \cdot 1988 \\ (0 \cdot 2067) \end{gathered}$
Longreach B	$\begin{aligned} & 0 \\ & \text { t } \\ & \text { + } \end{aligned}$	$\begin{gathered} 0.0149 \\ 0.0132 \\ (0.0131) \end{gathered}$	$\begin{gathered} 0 \cdot 0064 \\ 0 \cdot 0033 \\ (0 \cdot 0067) \end{gathered}$	0.0085 0.0066 (0.0065)	$\begin{gathered} 0.0468 \\ 0.0594 \\ (0.0658) \end{gathered}$	$\begin{gathered} 0 \cdot 0638 \\ 0 \cdot 0198 \\ (0 \cdot 1269) \end{gathered}$	$\begin{gathered} 0 \cdot 3936 \\ 0 \cdot 3300 \\ (0 \cdot 2495) \end{gathered}$	$\begin{gathered} 0 \cdot 0362 \\ 0.0297 \\ (0 \cdot 0612) \end{gathered}$	$\begin{gathered} 0.3851 \\ 0.3762 \\ (0.2401) \end{gathered}$	$\begin{gathered} 0 \cdot 0447 \\ 0 \cdot 1617 \\ (0 \cdot 2302) \end{gathered}$
Longreach C	$\begin{aligned} & \hat{o} \\ & \text { of } \end{aligned}$	$\begin{gathered} 0 \cdot 0089 \\ 0 \cdot 0000 \\ (0 \cdot 0023) \end{gathered}$	$\begin{gathered} 0 \cdot 0000 \\ 0 \cdot 0000 \\ (0 \cdot 0010) \end{gathered}$	0.0000 0.0000 (0.0012)	$\begin{gathered} 0 \cdot 0982 \\ 0 \cdot 0805 \\ (0 \cdot 0580) \end{gathered}$	$\begin{gathered} 0 \cdot 0536 \\ 0 \cdot 0460 \\ (0 \cdot 1489) \end{gathered}$	$\begin{gathered} 0 \cdot 2679 \\ 0 \cdot 2414 \\ (0.2169) \end{gathered}$	$\begin{gathered} 0 \cdot 1964 \\ 0 \cdot 1264 \\ (0 \cdot 0953) \end{gathered}$	$\begin{gathered} 0 \cdot 2589 \\ 0 \cdot 2414 \\ (0 \cdot 2821) \end{gathered}$	$\begin{gathered} 0 \cdot 1161 \\ 0 \cdot 2644 \\ (0 \cdot 1941) \end{gathered}$
Longreach D	$\begin{aligned} & \text { ó } \\ & q \end{aligned}$	$\begin{gathered} 0 \cdot 0096 \\ 0 \cdot 0071 \\ (0 \cdot 0076) \end{gathered}$	$\begin{gathered} 0 \cdot 0048 \\ 0 \cdot 0000 \\ (0 \cdot 0046) \end{gathered}$		$\begin{gathered} 0.0721 \\ 0.0643 \\ (0.0748) \end{gathered}$	$\begin{gathered} 0 \cdot 0625 \\ 0.0429 \\ (0 \cdot 1480) \end{gathered}$	$\begin{gathered} 0 \cdot 3702 \\ 0 \cdot 3429 \\ (0 \cdot 2459) \end{gathered}$	$\begin{gathered} 0 \cdot 1010 \\ 0 \cdot 1071 \\ (0 \cdot 0732) \end{gathered}$	$\begin{gathered} 0 \cdot 3077 \\ 0 \cdot 2429 \\ (0 \cdot 2434) \end{gathered}$	$\begin{gathered} 0 \cdot 0673 \\ 0 \cdot 1857 \\ (0 \cdot 1982) \end{gathered}$
Longreach E	$\begin{aligned} & o \\ & \text { t } \end{aligned}$	$\begin{gathered} 0 \cdot 0211 \\ 0 \cdot 0151 \\ (0 \cdot 0107) \end{gathered}$	$\begin{gathered} 0 \cdot 0018 \\ 0 \cdot 0014 \\ (0 \cdot 0066) \end{gathered}$		$\begin{gathered} 0 \cdot 1195 \\ 0 \cdot 0606 \\ (0 \cdot 0688) \end{gathered}$	$\begin{gathered} 0.0527 \\ 0 \cdot 0252 \\ (0.1613) \end{gathered}$	$\begin{gathered} 0 \cdot 3207 \\ 0 \cdot 2999 \\ (0 \cdot 2256) \end{gathered}$	$\begin{gathered} 0 \cdot 1257 \\ 0 \cdot 1391 \\ (0 \cdot 0916) \end{gathered}$	$\begin{gathered} 0 \cdot 2856 \\ 0 \cdot 3071 \\ (0 \cdot 2534) \end{gathered}$	$\begin{gathered} 0 \cdot 0703 \\ 0 \cdot 1435 \\ (0 \cdot 1746) \end{gathered}$
Longreach F	$\begin{aligned} & \text { ô } \\ & \text { of } \end{aligned}$	$\begin{gathered} 0.0082 \\ 0.0155 \\ (0.0091) \end{gathered}$	$\begin{gathered} 0.0035 \\ 0.0055 \\ (0.0054) \end{gathered}$		$\begin{gathered} 0 \cdot 1366 \\ 0 \cdot 0475 \\ (0 \cdot 0644) \end{gathered}$	$\begin{gathered} 0 \cdot 0271 \\ 0 \cdot 0137 \\ (0 \cdot 1408) \end{gathered}$	$\begin{gathered} 0 \cdot 3557 \\ 0 \cdot 2767 \\ (0 \cdot 2501) \end{gathered}$	$\begin{gathered} 0.0742 \\ 0.0941 \\ (0.0679) \end{gathered}$	$\begin{gathered} 0 \cdot 2945 \\ 0 \cdot 3689 \\ (0 \cdot 2419) \end{gathered}$	$\begin{gathered} 0 \cdot 0954 \\ 0 \cdot 1763 \\ (0 \cdot 2152) \end{gathered}$

Channel Country
root root
ro ot root root root root root
Broken Hill
Windorah
Griffith
Deniliquin
采
品

The Green-brown Colour Dimorphism

C. terminifera, like many orthopteran species, exhibits a green-brown colour dimorphism though this is largely limited to females (Key 1954). The proportion of green individuals was scored for all samples except Griffith (Table 6) and three of

Table 3. Contingency χ^{2} tests examining the independence of sex and colour pattern phenotype
In the samples Griffith, Longreach C and Longreach D the albomedia and nigrovirgata classes have been combined because of the low expected numbers of albomedia individuals

Sample	d.f.	χ^{2}	Sample	d.f.	χ^{2}
Longreach A	3	$25 \cdot 30^{* * *}$	Channel Country	3	$17 \cdot 72^{* * *}$
Longreach B	3	$31 \cdot 82^{* * *}$	$7 \cdot 30^{*}$	Broken Hill	3
Longreach C	2	Windorah	3	$36 \cdot 99^{* *}$	
Longreach D	2	$11 \cdot 56^{* *}$	Griffith	2	$0 \cdot 30$
Longreach E	3	$48 \cdot 66^{* * *}$	Deniliquin	3	$34 \cdot 45^{* * *}$
Longreach F	3	$71 \cdot 00^{* * *}$	Boulia	3	$40 \cdot 83^{* * *}$

the samples had enough green females to permit an examination of the association between this polymorphism and the colour pattern polymorphism (Table 7). This shows that $F^{r} F^{r}$ females have a lower proportion of green individuals than would be expected if there was no association between the two polymorphic systems and confirms the original observations of Key (1954).

Table 4. χ^{2} tests comparing observed genotype numbers with genotype numbers expected under the Hardy-Weinberg equilibrium
In most of the comparisons the $F^{a} F^{a}, F^{a} F^{r}, F^{a} F^{n}$ and $F^{a} F^{t}$ genotype classes have been pooled to give a total of seven classes and three degrees of freedom. In the samples Longreach C d ${ }^{1}$, Longreach C 9 , Longreach D ${ }^{t}$, Longreach $\mathrm{D} \circ$ and Griffith \circ the $F^{a} F^{a}, F^{a} F^{r}, F^{a} F^{n}, F^{a} F^{t}$ and $F^{n} F^{n}$ genotype classes have been pooled to give a total of six classes and two degrees of freedom

Sample	Sex	d.f.	χ^{2}	Sample	Sex	d.f.	χ^{2}
Longreach A	0^{\star}	3	74.37***	Channel Country	0^{*}	3	219•70***
	아	3	62.72***		아	3	119.60***
Longreach B	${ }^{\text {a }}$	3	172.89***	Broken Hill	σ	3	118•14***
	우	3	70.04***		¢	3	68.54***
Longreach C	${ }^{\text {o }}$	2	27-50***	Windorah	${ }^{*}$	3	283•06***
	우	2	10.49**		안	3	168.34***
Longreach D	$\widehat{\sigma}^{*}$	2	47.03***	Griffith	${ }^{\text {a }}$	3	179.50***
	앙	2	18.37***		안	2	22-20***
Longreach E	0^{\star}	3	261.35***	Deniliquin	${ }^{*}$	3	239.46***
	아	3	252.26***		아	3	$171 \cdot 81$
Longreach F	0°	3	251-84***	Boulia	${ }^{\text {a }}$	3	$351 \cdot 66^{* * *}$
	아	3	226.01***		아	3	251.02***

Discussion

All the populations analysed in this study were polymorphic with similar frequencies of the colour pattern genotypes across samples. The morph frequencies are similar to those observed in C. terminifera by Key (1954) and Byrne (1967b) and the same morphs are polymorphic in species of the related genus Austroicetes. It would appear,
Table 5. Viability estimates for the nine genotypes

Sample	Genotype								
	$F^{a} F^{r}$	$F^{a} F^{n}$	$F^{a} F^{t}$	$F^{n} F^{n}$	$F^{n} F^{t}$	$F^{n} F^{r}$	$F^{t} F^{t}$	$F^{t} F^{r}$	$F^{r} F^{r}$
Males									
Longreach A	$1 \cdot 0000$	0.4140	$0 \cdot 0000$	$0 \cdot 8343$	$0 \cdot 1312$	$0 \cdot 6860$	0.7241	$0 \cdot 6372$	0. 2007
Longreach B	0.7091	$0 \cdot 5955$	$0 \cdot 8153$	0.4434	$0 \cdot 3135$	0.9836	$0 \cdot 3688$	$1 \cdot 0000$	$0 \cdot 1211$
Longreach C	$1 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0000$	0.4375	$0 \cdot 0930$	$0 \cdot 3192$	0. 5326	$0 \cdot 2372$	$0 \cdot 1546$
Longreach D	0.8391	$0 \cdot 6931$	$0 \cdot 7246$	$0 \cdot 6403$	$0 \cdot 2805$	$1 \cdot 0000$	0.9165	0.8397	$0 \cdot 2256$
Longreach E	$1 \cdot 0000$	0.1383	0.1758	0.8808	0.1657	$0 \cdot 7208$	$0 \cdot 6959$	$0 \cdot 5716$	0. 2042
Longreach F	$0 \cdot 4248$	0.3055	0.4345	$1 \cdot 0000$	$0 \cdot 0908$	$0 \cdot 6705$	$0 \cdot 5152$	$0 \cdot 5739$	0. 2090
Channel Country	0.5432	0.0000	$0 \cdot 0000$	0. 5391	$0 \cdot 0428$	$0 \cdot 7187$	$1 \cdot 0000$	$0 \cdot 2515$	0.1652
Broken Hill	0.9213	0.0000	0. 5919	$0 \cdot 6336$	$0 \cdot 0353$	1.0000	0.7399	0.4277	0.0662
Windorah	$0 \cdot 8843$	0.1188	0.8464	$1 \cdot 0000$	0.0627	0.7127	$0 \cdot 7524$	0.6499	0. 2677
Griffith	0.8625	0.0000	$0 \cdot 1650$	$1 \cdot 0000$	$0 \cdot 0528$	$0 \cdot 2810$	$0 \cdot 4706$	$0 \cdot 3029$	$0 \cdot 2639$
Deniliquin	$1 \cdot 0000$	0.0000	$0 \cdot 0000$	0.9731	$0 \cdot 0256$	$0 \cdot 6599$	$0 \cdot 4081$	$0 \cdot 6770$	$0 \cdot 0646$
Boulia	$1 \cdot 0000$	0.0000	0. 2019	$0 \cdot 8948$	0.0494	0. 5741	0.9340	0.4745	0. 2571
Mean	0.8487	0. 1888	$0 \cdot 3296$	$0 \cdot 7731$	0.1119	0.6939	$0 \cdot 6715$	$0 \cdot 5536$	0.1833
Standardized mean	$1 \cdot 0000$	0. 2225	0.3884	0.9109	0.1318	$0 \cdot 8176$	$0 \cdot 7912$	$0 \cdot 6523$	0. 2160
Females									
Longreach A	$0 \cdot 5786$	0. 2425	0.8465	0.8465	$0 \cdot 0688$	$0 \cdot 6145$	0.7008	$1 \cdot 0000$	0.6220
Longreach B	$0 \cdot 6431$	$0 \cdot 3143$	$0 \cdot 6481$	0. 5761	$0 \cdot 0996$	$0 \cdot 8441$	$0 \cdot 3097$	$1 \cdot 0000$	$0 \cdot 4483$
Longreach C	$0 \cdot 0000$	$0 \cdot 0000$	0.0000	1.0000	0. 2226	$0 \cdot 8019$	0.9556	$0 \cdot 6165$	0.9815
Longreach D	$0 \cdot 5790$	$0 \cdot 0000$	1.0000	0.5327	0.1797	$0 \cdot 8642$	0.9067	0.6184	$0 \cdot 5806$
Longreach E	$0 \cdot 9293$	0.1397	0.6936	0. 5800	$0 \cdot 1029$	$0 \cdot 8753$	$1 \cdot 0000$	0.7980	$0 \cdot 5412$
Longreach F	$1 \cdot 0000$	0. 5980	0. 2072	0.4330	$0 \cdot 0571$	$0 \cdot 6496$	$0 \cdot 8137$	0.8953	$0 \cdot 4809$
Channel Country	$1 \cdot 0000$	$0 \cdot 0000$	0.0000	0. 2035	$0 \cdot 0090$	$0 \cdot 4006$	$0 \cdot 5252$	0. 1952	0. 2328
Broken Hill	0.7462	$0 \cdot 0000$	0. 2677	$0 \cdot 4283$	$0 \cdot 0000$	$0 \cdot 7289$	1-0000	0. 3893	0.3352
Windorah	$0 \cdot 6109$	$0 \cdot 0000$	0.3880	$0 \cdot 5472$	0.0508	0.6694	$1 \cdot 0000$	0. 5667	$0 \cdot 5081$
Griffith	1.0000	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 9218$	0.1416	0.9008	0.9449	$0 \cdot 7220$	$0 \cdot 6389$
Deniliquin	$0 \cdot 8178$	$0 \cdot 0000$	0.4506	$0 \cdot 2705$	$0 \cdot 0060$	0.6292	$1 \cdot 0000$	0.4228	$0 \cdot 2945$
Boulia	0.9591	$0 \cdot 0000$	$0 \cdot 7279$	0.9400	0.0510	$0 \cdot 7291$	$1 \cdot 0000$	$0 \cdot 7900$	0.6865
Mean	0.7387	0. 1079	0.4358	$0 \cdot 6066$	0.0824	0.7256	0.8464	$0 \cdot 6679$	$0 \cdot 5292$
Standardized mean	0.8728	0.1275	0. 5149	$0 \cdot 7167$	0.0974	$0 \cdot 8573$	$1 \cdot 0000$	$0 \cdot 7891$	$0 \cdot 6252$

therefore, that this polymorphic system is both stable and relatively uniform across different environments.

Key (1954) studied a total of 1169 males and 1443 females sampled from throughout the range of C. terminifera (which covers 95% of Australia) and was unable to demonstrate any heterogeneity between samples. By contrast, the present study demonstrated statistical heterogeneity between large samples from seven locations

Table 6. Proportion of green individuals in the $\mathbf{1 2}$ samples

Sample	Sex	Proportion green	Sample	Sex	Proportion green
Longreach A	σ^{*}	$0 \cdot 0000$	Channel Country	${ }^{\circ}$	$0 \cdot 0027$
	아	$0 \cdot 3798$		아	$0 \cdot 0032$
Longreach B	${ }^{1}$	$0 \cdot 0000$	Broken Hill	\bigcirc	$0 \cdot 0000$
	우	0. 2805		아	$0 \cdot 0067$
Longreach C	0^{*}	$0 \cdot 0000$	Windorah	${ }^{\text {o }}$	$0 \cdot 0000$
	아	0. 2874		¢	$0 \cdot 0035$
Longreach D	0^{*}	$0 \cdot 0096$	Deniliquin	${ }^{\text {or }}$	$0 \cdot 0020$
	아	$0 \cdot 0500$		아	$0 \cdot 0995$
Longreach E	δ^{*}	$0 \cdot 0000$	Boulia	${ }^{\circ}$	0.0018
	우	$0 \cdot 3079$		아	$0 \cdot 0343$
Longreach F	\bigcirc	$0 \cdot 0000$			
	안	$0 \cdot 0110$			

in eastern Australia. Little can be said about the significance of this heterogeneity, however, in absence of detailed information on migration patterns and the randomness of migration with respect to colour pattern. It is likely that most of the individuals examined in this study were the descendants of individuals breeding originally in south-west Queensland and north-west New South Wales where annual outbreaks occurred between 1969 and 1972 which led to invasions into southern New South

Table 7. Relationship between the colour pattern polymorphism and the green-brown dimorphism

Sample	Green			Non-green	
	$F^{r} F^{r}$	Non- $F^{r} F^{r}$		$F^{r} F^{r}$	Non- $F^{r} F^{r}$
Longreach A, B, D	9	211		χ_{1}^{2}	
Longreach E	8	419		133	427
Boulia	2	47		268	1111

Wales and Victoria. The apparent widespread distribution of sample locations in this study may, therefore, be misleading. Differences between the sexes in genotype frequencies are apparent as was observed by Byrne (1967b). These could represent a sampling effect due to different habitat associations between the sexes though this is unlikely since the morph frequencies do not differ in samples collected using different techniques. It is assumed, therefore, that they reflect different selection regimes in the two sexes.

The most significant feature of these data is the difference between the observed genotype frequencies and those expected under a random mating, no selection
(Hardy-Weinberg) model. These differences could arise from a number of different causes. First, the low frequency of certain genotypes in the samples could result from a low frequency of matings generating such genotypes. Indeed, it has been suggested that conspicuous colour pattern polymorphisms could evolve in order to distinguish different physiological morphs in that they allow individuals 'genotype to be read at a glance by other individuals' and thus facilitate non-random mating patterns which increase an individuals fitness (Borowsky 1981). However, such nonrandom mating patterns would only evolve if there already exist fitness differentials associated with the colour pattern morphs. They cannot, therefore, be used as an explanation for the deficiency of certain genotype classes though they could certainly contribute to any such deficits. Nevertheless, it is important that data be collected in natural populations of C. terminifera on the pattern of mating with respect to the colour pattern genotype.

A second potential problem in interpreting these data is the possibility of a Wahlund effect due to sample aggregates of populations with different gene frequencies. Unlike the well-known two-allele situation, in the case of multiple alleles the frequency of particular heterozygotes can be either higher or lower and it is not possible to estimate the effect without a knowledge of the covariance matrix of the alleles (Nei 1965; Li 1969). However, the general consistency of the genotype frequencies across the different samples suggests that the deviations from HardyWeinberg frequencies are not due to the effects of population subdivision.

The third explanation for the observed deficiency of certain genotype classes is that they result from the action of natural selection. In order to examine this possibility it was assumed that mating was at random with respect to the colour pattern genotypes and that the polymorphic system was in equilibrium. Thus, the before-selection (Hardy-Weinberg) genotype frequencies can be calculated from the after-selection gene frequencies and the ratio of the observed to the expected genotype frequencies will, therefore, represent partial fitness values resulting from a component of egg to adult viability. The problems associated with estimating fitness values from population genotype frequencies are formidable. In particular, fitness values obtained from observed genotype frequencies are necessarily incomplete since they are based on a viability component only and may, therefore, be nullified by other later-acting fitness components (Prout 1969). Nevertheless, deviations from HardyWeinberg frequencies can indicate that some form of selection is operating on the genotypes.

The first feature to note with respect to the viability estimates is the magnitude of the differences among the genotypes. These at first appear to be too great to apply to a single polymorphic locus at equilibrium. As previously mentioned, it is possible that these values represent only the relative rankings of the genotype viabilities and the large absolute values could result from a pattern of non-random mating. It must be remembered, however, that balanced polymorphic systems involving 'non-cryptic' characters such as colour pattern variants, unlike polymorphisms for protein sequence variants, are known to involve large selection differentials (Ford 1975).

Although the data have been presented in terms of the single-locus model of Byrne (1967a) it appears that the F locus is in fact a supergene, a situation well established in other polymorphic systems (Ford 1975). Hawke (1974) observed recombinant progeny in a cross $F^{a} F^{t}$ male and $F^{n} F^{r}$ female and this was confirmed in further
test matings of the progeny. The F locus must, therefore, be regarded as a series of tightly linked genes. Byrne (1967a) could not exclude this situation on the basis of the number of progeny he scored and proposed a supergene model involving three loci. In this model the $F^{r} F^{r}$ genotype is represented as ant/ant, $F^{n} F^{r}$ represented as $a N t / a n t$ and $F^{n} F^{t}$ represented as either $a N t / a n T$ or $a N T / a n t$, etc. though as discussed later nearly all heterozygotes will be in the repulsion phase.

Association between colour pattern morphs and other phenotypic characteristics have been reported in many grasshopper species. Differences between colour pattern morphs have been observed with respect to tolerance to heat stress (Nankivell 1974), behaviour and morphology (Rubztov 1935), development time (Bradley 1975) and longevity (Richards and Waloff 1954). The observed association between the colour pattern morphs and the green-brown colour dimorphism in C. terminifera confirms the previous observations of Key (1954) and Byrne (1967b) and shows that the supergene in C. terminifera is involved in more than the determination of colour pattern variation.

Green-brown colour variation occurs in many species of acridids (Rowell 1971). In some species the colour variation is under genetic control and is insensitive to the effects of humidity, density or background colour (Rubtzov 1935; Gill 1981). In other species, including C. terminifera, which inhabit grasslands exhibiting seasonal changes in moisture content, the green-brown dimorphism is under environmental control by humidity, the moisture content of the diet and, in some species including C. terminifera, density (Key 1954; Rowell and Cannis 1971; Otte and Williams 1972). The system determining environmental induction of the colour morphs is itself. under genetic control and it is possible to select for sensitivity or insensitivity to environmental induction (Nel 1968). The adaptive value of the dimorphism appears to result from both crypsis and from the fact that the green morph is more stressresistant at high humidities and the brown morph more-stress resistant at low humidities (Albrecht 1964). It would appear, therefore, that in C. terminifera selection acting on the green-brown colour variation will in turn result in fitness differences between the colour pattern genotypes.

The second feature of the viability estimates is that the genotypes with the lowest viabilities are those genotypes that are heterozygous for two dominant alleles. In terms of the supergene model this means that in natural populations chromosomes containing dominant alleles in coupling must be very rare. Individuals with phenotypes corresponding to genotypes with three dominant alleles have been observed in the field and laboratory (Hawke 1974) so that one must presume they are normally eliminated by selection. It appears, therefore, that the components of the supergene exhibit extreme linkage disequilibrium with four of the possible chromosomes (ANt, $a N T, A n T$ and $A N T$) at an extremely low frequency and not recorded in this study. The low viability of genotypes with two different dominant alleles would provide a rationale for the existence of the supergene complex through the modification of linkage relationships under natural selection (Fisher 1930; Mather 1943; Bodmer and Parsons 1962).

The reality of the viability measures gains support from the fact that the situation in C. terminifera is remarkably similar to that observed in the grouse locust Paratettix cucullatus by Fisher (1939). Colour pattern variation in P. cucullatus is controlled by 25 genes. 24 of these genes form a supergene and of these 23 are dominant and one is recessive (Nabours 1929). Fisher showed in an analysis of samples from
six natural populations that, within the supergene, heterozygotes for two dominant genes had their viability reduced by at least 40%. The same observation in an entirely different polymorphic system suggests a phenomenon of considerable interest.

Fisher (1939) pointed out that the low viability of double dominant genotypes was not observed in his analysis of Nabour's laboratory breeding experiments on a related species Apotettetix eurycephalus. Similarly, Byrne (1967a) in his study of the inheritance of the colour patterns in C. terminifera did not observe any significant deviations from Mendelian proportions in the progeny of different crosses. Fisher concluded that 'The cause of elimination is thus probably not a lack of physiological viability ... but some cause such as elimination by predators, which is inoperative in conditions of culture.' While predators may play some role in determining the low viability of the double dominant genotypes in natural populations one would not expect this effect to be observed in all samples. It may be significant that the two natural populations at Coonamble, N.S.W., analysed by Byrne (1967b), showed no evidence of the low viability of double dominant genotypes. These populations appeared to be at low density in contrast to the high density swarming populations analysed in this study and there is evidence that selection coefficients are effected by the degree of crowding experienced by the individuals (da Cunha 1949; Birch 1955; Lewontin 1955; Battaglia 1958; Sokal and Karten 1964). Thus it is possible that the low viability of the double dominant genotypes is only manifested under crowded conditions.

If the viability values for the double dominant genotypes in C. terminifera are real then they would impose restrictions on the frequencies of the three dominant genes (F^{a}, F^{n} and F^{t}) since increasing frequencies of these genes would result in an increasing genetic load. This effect could account for the high frequency of the recessive allele $\left(F^{r}\right)$ in all populations. The proposed viability structure does not, however, explain the persistence of the three dominant genes in all populations. Each dominant gene might indeed exhibit heterozygote advantage with the recessive allele as proposed by Fisher (1939) for P. cucullatus. The $F^{r} F^{r}$ genotype does appear to exhibit low viability in all samples but there is no evidence from the viability estimates of heterozygote advantage. The continued maintenance of the three dominant genes in stable equilibrium frequencies in a situation where they exhibit reduced viability when in combination would imply a complex selection regime. Certainly the different selection regime in the two sexes could be an important factor (Mandel 1971; Kidwell et al. 1977) as would be a pattern of non-random mating. C. terminifera being a locust, is subject to large fluctuations in population density (Casimir 1962; Magor 1970; Clark 1972; Farrow 1977) and these will be accompanied by changes in the frequencies of the green-brown morphs which will in turn exert selection pressures on the colour pattern genotypes. It would be naive to expect a single explanation for the polymorphism as the extensive work on the colour pattern polymorphism in the land snail Cepaea nemoralis has shown (Jones et al. 1977). Future work will require a detailed study of the ecology of the different genotypes under a variety of environmental conditions.

Acknowledgments

R.A.H.D. collected and scored locust samples while employed by the Centre for Overseas Pest Research, London, in a joint project with the Division of Entomology, CSIRO.

We are most grateful to Geoff Russell for technical assistance in the field, to the late Drs O. R. Byrne and D. P. Clark for their assistance, to Dr John McKenzie for making valuable comments on an earlier draft of the manuscript and to Hazel Woodward for drawing the figures and carrying out most of the calculations.

References

Albrecht, F. O. (1964). État hygrometrique, coloration et resistance chez l'imago de Locusta migratoria migratorioides (R. et. F.). Experientia 20, 97-8.
Battaglia, B. (1958). Balanced polymorphism in Tisbe reticulata, a marine copepod. Evolution 12, 358-64.
Birch, L. C. (1955). Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389-99.
Bodmer, W. F., and Parsons, P. A. (1962). Linkage and recombination in evolution. Advan. Gen. 11, 1-100.
Borowsky, R. (1981). Tailspots of Xiphophorus and the evolution of conspicuous polymorphism. Evolution 35, 345-58.
Bradley, J. S. (1975). Population dynamics and natural selection in a mixed colony of grasshoppers. Ph.D. Thesis, University of Liverpool.
Byrne, O. R. (1967a). Polymorphism in the Australian Acrididae I. Inheritance of colour patterns in the plague locust, Chortoicetes terminifera. Heredity 22, 561-8.
Byrne, O. R. (1967b). Polymorphism in the Australian Acrididae. II. Changes in colour pattern gene frequencies in the plague locust, Chortoicetes terminifera. Heredity 22, 569-89.
Casimir, M. (1962). History of outbreaks of the Australian plague locust, Chortoicetes terminifera (Walk.), between 1933 and 1959 and analysis of the influence of rainfall on these outbreaks. Aust. J. Agric. Res. 13, 674-700.
Clark, D. P. (1972). The plague dynamics of the Australian plague locust Chortoicetes terminifera (Walk.). In 'Proceedings of the International Study Conference on the Current and Future Problems of Acridology, London 1970'. (Eds C. F. Hemming and L. H. C. Taylor.) pp. 275-87. (Centre for Overseas Pest Research: London.)
Creighton, M., and Robertson, W. R. B. (1941). Genetic studies on Chorthippus longicornis. J. Hered. 32, 339-41.

Cunha, A. B. da (1949). Genetic analysis of the polymorphism of colour pattern in Drosophila polymorpha. Evolution 3, 239-51.
Dearn, J. M. (1981). Latitudinal cline in a colour pattern polymorphism in the Australian grasshopper Phaulacridium vittatum. Heredity 47, 111-19.
Farrow, R. A. (1977). Origin and decline of the 1973 plague locust outbreak in central western New South Wales. Aust. J. Zool. 25, 455-89.
Fisher, R. A. (1930). 'The Genetical Theory of Natural Selection.' (Clarendon Press: Oxford.)
Fisher, R. A. (1939). Selective forces in wild populations of Paratettix texanus. Ann. Eugen. 9, 109-22.
Ford, E. B. (1975). 'Ecological Genetics.' (Chapman and Hall: London.)
Gill, P. (1981). The genetics of colour-patterns in the grasshopper Chorthippus brunneus. Biol. J. Linn. Soc. 16, 243-59.

Hawke, A. D. (1974). Genetic studies of polymorphism in laboratory and natural populations of the Australian plague locust, Chortoicetes terminifera. Ph.D. Thesis, Australian National University, Canberra.
Isley, F. B. (1938). Survival value of Acridian protective coloration. Ecology 19, 370-89.
Jones, J. S., Leith, B. M., and Rawlings, P. (1977). Polymorphisms in Cepaea: a problem with too many solutions? Ann. Rev. Ecol. Syst. 8, 109-43.
Key, K. H. L. (1954). 'The Taxonomy, Phases, and Distribution of the Genera Chortoicetes Brunn. and Austroicetes Uv. (Orthoptera: Acrididae).' (CSIRO: Canberra.)
Kidwell, J. F., Clegg, M. T., Stewart, F. M., and Prout, T. (1977). Regions of stable equilibria for models of differential selection in the two sexes under random mating. Genetics 85, 171-83.
King, R. L., and Slifer, E. H. (1955). The inheritance of red and blue hind tibiae in the lesser migratory grasshopper, Melanoplus mexicanus mexicanus (Saussure). J. Hered. 46, 302-4.

Lewontin, R. C. (1955). The effects of population density and composition on viability in Drosophila melanogaster. Evolution 9, 27-41.
Lewontin, R. C. (1974). 'The Genetic Basis of Evolutionary Change.' (Columbia University Press: New York.)
Li, C. C. (1969). Population subdivision with respect to multiple alleles. Ann. Hum. Genet. 33, 23-29.
Magor, J. I. (1970). Outbreaks of the Australian plague locust (Chortoicetes terminifera Walk.) in New South Wales during the period 1937-1962, particularly in relation to rainfall. AntiLocust Mem. No. 11.
Mandel, S. P. H. (1971). Owen's model of a genetical system with differential viability between sexes. Heredity 26, 49-63.
Mather, K. (1943). Polygenic inheritance and natural selection. Biol. Rev. 18, 32-64.
Nabours, R. K. (1929). The genetics of the Tettigidae (grouse locusts). Bibl. Genet. 5, 27-104.
Nankivell, R. N. (1974). Interactions between inversion polymorphisms and the colour pattern polymorphism in the grasshopper Austroicetes interioris (White and Key). Acrida 3, 93-111.
Nei, M. (1965). Variation and covariation of gene frequencies in subdivided populations. Evolution 19, 256-8.
Nel, M. D. (1968). Selection at high humidity for green and brown solitaria hopper coloration in Locustana pardalina (Walker). S. Afr. J. Agric. Sci. 11, 163-72.
Otte, D., and Williams, K. (1972). Environmentally induced color dimorphisms in grasshoppers. Syrbula admirabilis. Dichromorpha viridis, and Chortophaga viridifasciata. Ann. Ent. Soc. Am. 65, 1154-61.
Prout, T. (1969). The estimation of fitnesses from population data. Genetics 63, 949-67.
Richards, O. W., and Waloff, N. (1954). Studies on the biology and population dynamics of British grasshoppers. Anti-Locust Bull. No. 17.
Rowell, C. H. F. (1971). The variable coloration of the acridoid grasshoppers. Adv. Insect. Physiol. 8, 145-98.
Rowell, C. H. F., and Cannis, R. L. (1971). Environmental factors affecting the green/brown polymorphisms in the cyrtacanthacridine grasshopper Schistocerca vaga (Scudder). Acrida 1, 69-77.
Rubtzov, I. A. (1935). Phase variation in non-swarming grasshoppers. Bull. Ent. Res. 26, 499-524.
Sansome, F. W., and La Cour, L. (1935). The genetics of grasshoppers: Chorthippus parallelus. J. Genet. 30, 415-22.

Sokal, R. R., and Karten, I. (1964). Competition among genotypes in Tribolium castaneum at varying densities and gene frequencies (the black locust). Genetics 49, 195-211.
Vorontzovsky, P. A. (1928). On the question of homologous series of colour variation in Acrididae. (In Russian.) Bull. Orenburg Plant Prot. Sta. 1, 27-39.

[^0]: * This publication has been lodged with the Editor-in-Chief, Editorial and Publications Section, CSIRO, 314 Albert St., East Melbourne, Vic. 3002. Copies are available on request.

