Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Facultative crassulacean acid metabolism (CAM) in four small C3 and C4 leaf-succulents

Klaus Winter A C and Joseph A. M. Holtum A B
+ Author Affiliations
- Author Affiliations

A Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama.

B Centre for Tropical Biodiversity and Climate Change, College of Science and Engineering, James Cook University, Townsville 4811, Queensland, Australia.

C Corresponding author. Email: winterk@si.edu

Australian Journal of Botany 65(2) 103-108 https://doi.org/10.1071/BT16015
Submitted: 2 February 2016  Accepted: 24 January 2017   Published: 24 February 2017

Abstract

Measurements of whole-plant gas exchange and titratable acidity demonstrate that the Australian native species Anacampseros australiana J.M.Black (Anacampserotaceae), Crassula sieberiana (Schult. & Schult.f.) Druce (Crassulaceae) and Portulaca australis Endl. (Portulacaceae) and the widespread naturalised tropical exotic, Portulaca pilosa L., exhibit facultative crassulacean acid metabolism (CAM). In well-watered plants, net CO2 uptake was restricted to the daylight hours and occurred via the C3 pathway (A. australiana and C. sieberiana) or the C4 pathway (P. australis and P. pilosa). Leaves of well-watered plants did not accumulate titratable acidity during the night. Following drought treatment, CO2 uptake in the light by shoots decreased markedly, nocturnal gas-exchange shifted from net CO2 loss to a CAM-type pattern that included net CO2 uptake, and leaves acidified at night. Nocturnal CO2 uptake by shoots and leaf acidification were most pronounced in A. australiana and least so in C. sieberiana. The induction of dark CO2 uptake and tissue acidification was fully reversible in all four species: upon rewatering, nocturnal CO2 uptake and acidification ceased and the rates of CO2 incorporation in the light were restored. We suggest that, hitherto considered relatively exceptional globally, facultative CAM may be more common than previously suspected, particularly among the generally small ephemeral leaf-succulents that characterise Australia’s succulent flora.

Additional keywords: Anacampseros, C4 photosynthesis, Crassula, functional diversity, photosynthetic pathway, Portulaca.


References

ALA (Atlas of Living Australia) (2016) ‘Atlas of living Australia.’ Available at http://www.ala.org.au/. [Verified 19 January 2016].

Brulfert J, Güclü S, Kluge M (1991) Effects of abrupt or progressive drought on the photosynthetic mode of Crassula sieberiana cultivated under different daylengths. Journal of Plant Physiology 138, 685–690.
Effects of abrupt or progressive drought on the photosynthetic mode of Crassula sieberiana cultivated under different daylengths.CrossRef | 1:CAS:528:DyaK38XjvVWisQ%3D%3D&md5=a4f67c1730b155c690d033d53dc022a9CAS |

CHAH (Council of Heads of Australasian Herbaria) (2016) ‘Australian plant census.’ IBIS database. (Centre for Australian National Biodiversity Research: Canberra) Available at http://www.chah.gov.au/apc/index.html. [Verified 19 January 2016].

Christin PA, Arakaki M, Osborne CP, Bräutigam A, Sage RF, Hibberd JM, Kelly S, Covshoff S, Wong GK-S, Hancock L, Edwards EJ (2014) Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. Journal of Experimental Botany 65, 3609–3621.
Shared origins of a key enzyme during the evolution of C4 and CAM metabolism.CrossRef |

D’Andrea RM, Andreo CS, Lara MV (2014) Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering. Physiologia Plantarum 152, 414–430.
Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.CrossRef | 1:CAS:528:DC%2BC2cXhslCqtbzO&md5=192fdae6efdc326484d756fa69eeb5f4CAS |

Ellenberg H (1981) Ursachen des Vorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora 171, 114–169.

Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant, Cell & Environment 15, 821–829.
Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia.CrossRef | 1:CAS:528:DyaK3sXjsF2kug%3D%3D&md5=a11d6bd0b65954e85223c3296d299d7fCAS |

Guralnick LJ, Jackson MD (2001) The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae. International Journal of Plant Sciences 162, 257–262.
The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae.CrossRef | 1:CAS:528:DC%2BD3MXjtFKgtLc%3D&md5=f55fb7f9557d390e9d9f2ae4631a74faCAS |

Guralnick LJ, Ting IP (1986) Seasonal response to drought and rewatering in Portulacaria afra (L.) Jacq. Oecologia 70, 85–91.
Seasonal response to drought and rewatering in Portulacaria afra (L.) Jacq.CrossRef |

Guralnick LJ, Rorabaugh PA, Hanscom Z (1984) Seasonal shifts of photosynthesis in Portulacaria afra (L.) Jacq. Plant Physiology 76, 643–646.
Seasonal shifts of photosynthesis in Portulacaria afra (L.) Jacq.CrossRef | 1:STN:280:DC%2BC3cnhs1Slug%3D%3D&md5=89f12109abfd5c3dfe9af69c94ba26d5CAS |

Guralnick LJ, Edwards GE, Ku MSB, Hockema B, Franceschi VR (2002) Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant, Portulaca grandiflora. Functional Plant Biology 29, 763–773.
Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant, Portulaca grandiflora.CrossRef | 1:CAS:528:DC%2BD38XlsVWqurk%3D&md5=de52bf99ba2d98f5e3b75563b9849cb9CAS |

Guralnick LJ, Clin A, Smith M, Sage RF (2008) Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. Journal of Experimental Botany 59, 1735–1742.
Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae.CrossRef | 1:CAS:528:DC%2BD1cXmtlelt7Y%3D&md5=30fa420370db0043ccb2c148e1d79423CAS |

Hernández-Ledesma P, Berendsohn WG, Borsch T, Von Mering S, Akhani H, Arias S, Castañeda-Noa I, Eggli U, Eriksson R, Flores-Olvera H, Fuentes-Bazán S, Kadereit G, Klak C, Korotkova N, Nyffeler R, Ocampo G, Ochoterena H, Oxelman B, Rabeler RK, Sanchez A, Schlumpberger BO, Uotila P (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 45, 281–383.
A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales.CrossRef |

Herrera A (1999) Effects of photoperiod and drought on the induction of crassulacean acid metabolism and the reproduction of plants of Talinum triangulare. Canadian Journal of Botany 77, 404–409.
Effects of photoperiod and drought on the induction of crassulacean acid metabolism and the reproduction of plants of Talinum triangulare.CrossRef | 1:CAS:528:DyaK1MXmtlCqtLo%3D&md5=e9841d5a139b125097ac16af0849bae4CAS |

Holtum JAM, Winter K (2003) Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. Planta 218, 152–158.
Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2.CrossRef | 1:CAS:528:DC%2BD3sXovV2ltLg%3D&md5=9341a6ca6d9ad369ca2759bebd583e61CAS |

Holtum JAM, Aranda J, Virgo A, Gehrig HH, Winter K (2004) δ13C values and crassulacean acid metabolism in Clusia species from Panama. Trees 18, 658–668.
δ13C values and crassulacean acid metabolism in Clusia species from Panama.CrossRef | 1:CAS:528:DC%2BD2cXovVKqsbY%3D&md5=f4984890bad547d5cbd5235deec71327CAS |

Holtum JAM, Hancock LP, Edwards EJ, Crisp MD, Crayn DM, Sage R, Winter K (2016) Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism? Current Opinion in Plant Biology 31, 109–117.
Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism?CrossRef | 1:CAS:528:DC%2BC28XlsF2gt74%3D&md5=4a20367f9a4281724eef246df99c217cCAS |

Kapitany A (2007) ‘Australian succulent plants.’ (Kapitany Concepts: Boronia, Vic.)

Koch K, Kennedy RA (1980) Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiology 65, 193–197.
Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L.CrossRef | 1:CAS:528:DyaL3cXhsVemsrw%3D&md5=dd3675b44cedbc39ba74ac54d88895eaCAS |

Kraybill AA, Martin CE (1996) Crassulacean acid metabolism in three species of the C4 genus Portulaca. International Journal of Plant Sciences 157, 103–109.
Crassulacean acid metabolism in three species of the C4 genus Portulaca.CrossRef | 1:CAS:528:DyaK28XivVGltb8%3D&md5=79184ce1ce0ba4dffb96615f5b3b5515CAS |

Lüttge U (1988) Day-night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance. Plant, Cell & Environment 11, 445–451.
Day-night changes of citric-acid levels in crassulacean acid metabolism: phenomenon and ecophysiological significance.CrossRef |

Matthews JF, Ketron DW, Zane SF (1992) The reevaluation of Portulaca pilosa and P. mundula (Portulacaceae). SIDA, Contributions to Botany 15, 71–89.

Nyffeler R, Eggli U (2010) Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59, 227–240.

Ocampo G, Koteyeva NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT (2013) Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae. American Journal of Botany 100, 2388–2402.
Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.CrossRef |

Sternberg LO, DeNiro MJ, Johnson HB (1984) Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiology 74, 557–561.
Isotope ratios of cellulose from plants having different photosynthetic pathways.CrossRef | 1:CAS:528:DyaL2cXhsFeqtbs%3D&md5=53befc8989737d9aea2bf1609338f1cbCAS |

Toelken HR (1981) The species of Crassula L. in Australia. Journal of the Adelaide Botanical Gardens 3, 57–90.

Toelken HR (1983) Additions to ‘The species of Crassula L. in Australia’. Journal of the Adelaide Botanical Gardens 6, 193–196.

Toelken HR (2002) The annual taxa of the Crassula sieberiana complex in South Australia. South Australian Naturalist 76, 4–13.

Winter K, Holtum JAM (2007) Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiology 143, 98–107.
Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum.CrossRef | 1:CAS:528:DC%2BD2sXpt1Ogtw%3D%3D&md5=e06c3ec9dd711b8b18443fbd17264569CAS |

Winter K, Holtum JAM (2011) Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Functional Plant Biology 38, 576–582.
Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients.CrossRef | 1:CAS:528:DC%2BC3MXos1ynu70%3D&md5=c0ca8a49c970029cc8d9c3a210a07921CAS |

Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Journal of Experimental Botany 65, 3425–3441.
Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.CrossRef |

Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Zeitschrift für Pflanzenphysiologie 67, 166–170.
NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum.CrossRef | 1:CAS:528:DyaE38XksFyqs7c%3D&md5=5f4b03a6e331d814548bd705a266de33CAS |

Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34, 225–237.
Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment.CrossRef |

Winter K, Osmond CB, Pate JS (1981) Coping with salinity. In ‘The biology of Australian plants’. (Eds JS Pate, AJ McComb) pp. 88–113. (UWA Press: Perth)

Winter K, Garcia M, Holtum JAM (2008) On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë and Opuntia. Journal of Experimental Botany 59, 1829–1840.
On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë and Opuntia.CrossRef | 1:CAS:528:DC%2BD1cXmtleltrs%3D&md5=d415b9ca2de655b2e987b5e192700ca7CAS |

Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous or discrete trait? New Phytologist 208, 73–78.
Crassulacean acid metabolism: a continuous or discrete trait?CrossRef | 1:CAS:528:DC%2BC2MXhsVChsr%2FJ&md5=1cdde6866017e78964c891d33aa751daCAS |

Zotz G, Winter K (1993) Short-term regulation of crassulacean acid metabolism activity in a tropical hemiepiphyte, Clusia uvitana. Plant Physiology 102, 835–841.
Short-term regulation of crassulacean acid metabolism activity in a tropical hemiepiphyte, Clusia uvitana.CrossRef | 1:CAS:528:DyaK3sXlvF2ktbo%3D&md5=419cb5880a420d167ae71d005bab0fd7CAS |



Rent Article (via Deepdyve) Export Citation Cited By (2)