1	10.1071/BT12212_AC
2	Australian Journal of Botany, 2013, 61 , 11–21
3	©CSIRO 2013
4	
5	Supplementary Material
6	
7	Estimating the time since fire of long-unburnt <i>Eucalyptus salubris</i> (Myrtaceae) stands in
8	the Great Western Woodlands
9	
10	Carl R. Gosper ^{A,B,C} , Suzanne M. Prober ^B , Colin J. Yates ^A and Georg Wiehl ^B
11	^A Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley
12	Delivery Centre, WA 6983, Australia.
13	^B CSIRO Ecosystem Sciences, Private Bag 5, Wembley, WA 6913, Australia.
14	^C Corresponding author. Email: <u>carl.gosper@dec.wa.gov.au</u>

Table S1. Estimated time since fire for plots not sampled for growth rings.

Estimated time since fire (years ± SE of single-trunked *E. salubris* from modified pointcentred quarter samples; see Methods) was calculated by extrapolation of the relationship
between (i) untransformed growth rings and diameter (Model 1; Table 1, Fig. 3); (ii) squareroot transformed growth rings and diameter (Model 4; Fig. 3); (iii) untransformed growth
rings and diameter + northing (Model 2); (iv) square-root transformed growth rings and
diameter + northing (Model 5); and (v) square-root transformed growth rings and diameter +
height + northing (Model 22).

	Model number (Table 1)					
						of fire in
Plot	1	4	2	5	22	1972
GIM01	24 ± 2.3	20 ± 2.0	26 ± 2.4	22 ± 2.1	33 ± 1.9	Yes
GIM02	39 ± 2.9	35 ± 3.2	42 ± 3.0	38 ± 3.4	40 ± 2.9	Yes
GIM04	140 ± 13	250 ± 40	140 ± 13	260 ± 41	150 ± 22	No
GIM08	250 ± 27	$740\pm135^{\rm A}$	260 ± 28	770 ± 140^{A}	280 ± 41	No
GIM13	180 ± 15	400 ± 55	190 ± 15	420 ± 57	200 ± 25	No
GIM17	120 ± 11	190 ± 33	120 ± 11	200 ± 34	100 ± 11	No
GIM18	230 ± 12	590 ± 53	230 ± 12	610 ± 54	240 ± 24	No
GIM22	150 ± 11	270 ± 36	150 ± 11	280 ± 37	120 ± 12	No
GIM23	48 ± 3.6	45 ± 4.9	48 ± 3.7	46 ± 5.1	56 ± 3.7	Yes

GIM27	200 ± 12	470 ± 50	200 ± 12	490 ± 52	170 ± 12	No
GIM28	240 ± 15	630 ± 66	240 ± 15	650 ± 68	230 ± 21	No
GIM29	240 ± 23	$690\pm131^{\rm A}$	240 ± 23	$690\pm134^{\rm A}$	230 ± 29	No
GIM31	230 ± 33	690 ± 176^A	230 ± 34	690 ± 180^A	220 ± 38	No
GIM34	200 ± 15	470 ± 60	200 ± 15	470 ± 61	170 ± 18	No
GIM35	180 ± 14	410 ± 54	180 ± 14	410 ± 55	160 ± 18	No
GIM36	29 ± 2.7	24 ± 2.6	24 ± 2.8	21 ± 2.4	31 ± 2.9	Yes
GIM38	180 ± 25	430 ± 97	180 ± 25	420 ± 98	160 ± 26	No
GIM40	140 ± 17	260 ± 56	140 ± 17	260 ± 56	120 ± 17	No
GIM43	170 ± 19	350 ± 74	160 ± 19	350 ± 75	130 ± 17	No
GIM45	160 ± 5.1	320 ± 18	160 ± 5.2	320 ± 18	120 ± 7.3	No
GIM46	210 ± 30	530 ± 131	210 ± 31	550 ± 136	200 ± 35	No
GIM48	35 ± 2.6	30 ± 2.6	35 ± 2.6	30 ± 2.7	38 ± 3.2	Yes
GIM49	86 ± 11	110 ± 24	88 ± 12	110 ± 25	84 ± 7.5	No
GIM50	210 ± 24	530 ± 99	220 ± 24	550 ± 103	230 ± 20	No
GIM52	200 ± 12	450 ± 49	200 ± 13	470 ± 51	230 ± 14	No
GIM53	110 ± 6.9	160 ± 17	100 ± 7.0	150 ± 17	100 ± 11	No
GIM55	230 ± 20	620 ± 95	230 ± 20	620 ± 96	220 ± 24	No

GIM57	210 ± 27	550 ± 125	210 ± 27	550 ± 127	160 ± 23	No
GIM58	370 ± 20	$1440\pm143^{\rm A}$	370 ± 21	1460 ± 146^A	350 ± 33	No
GIM61	170 ± 17	370 ± 71	170 ± 18	390 ± 73	160 ± 24	No
GIM68	180 ± 16	400 ± 57	190 ± 16	420 ± 59	200 ± 21	No
GIM69	200 ± 5	480 ± 22	210 ± 5.5	500 ± 23	230 ± 18	No
GIM70	290 ± 36	$940\pm187^{\rm A}$	300 ± 37	$970\pm194^{\rm A}$	310 ± 41	No
GIM71	250 ± 21	$700\pm105^{\rm A}$	250 ± 21	710 ± 108^{A}	240 ± 22	No
GIM72	270 ± 43	$800\pm225^{\rm A}$	270 ± 43	$820\pm232^{\rm A}$	200 ± 91	No

^APlots with a more uncertain estimated time since fire, due to small changes in trunk diameter
 causing large changes in estimated time since fire with square- root transformation of
 growth rings (Clarke *et al.* 2010). Until more information on the time since fire of the
 longest-unburnt plots becomes available, it may be prudent to regard these plots as having
 an age of > ~ 650 years.

29

Fig. S1. Frequency distribution of sizes of single-trunked *Eucalyptus salubris*: (a) diameter at the base; (b) tree height. The arrow indicates the largest individual sampled with a complete growth ring record. The proportion of individuals larger than the maximum of any trunk with a complete growth ring record was 35.4% for diameter at the base, and 16.1% for plant height. The maximum of any trunk with a complete growth ring record was 12.3% of the largest trunk diameter measured, and 56% of the tallest tree measured.