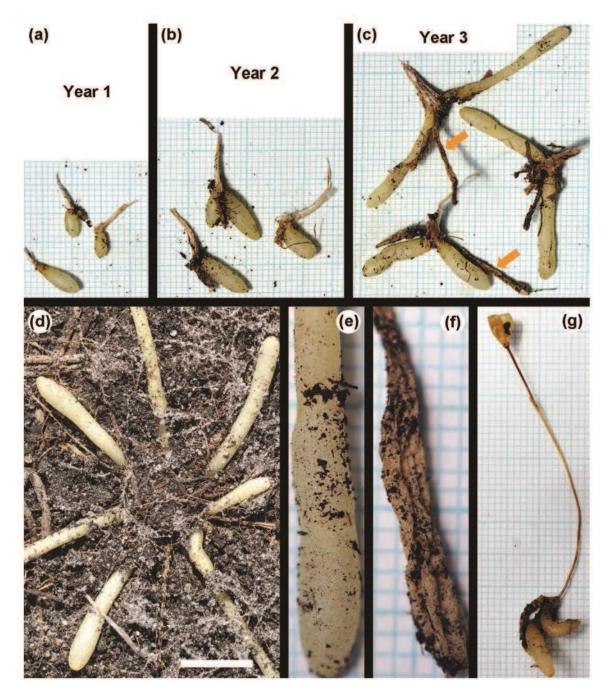

Supplementary Material

Survival strategies of the root tuberous geophyte *Chamaescilla corymbosa* in a Mediterranean-climate rock-outcrop environment


Michael W. Shane^{A,B} and John S. Pate^A

^ASchool of Plant Biology (M084), Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

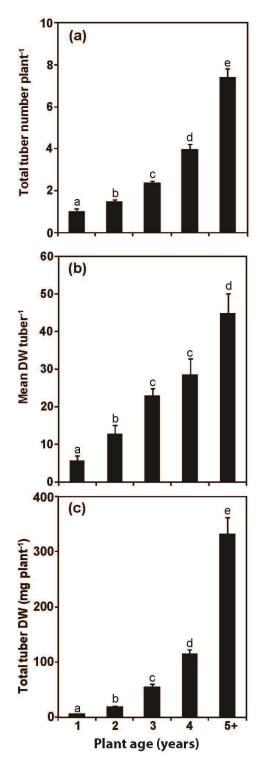

^BCorresponding author. Email: michael.shane@uwa.edu.au


Fig. S1. (a) Regional temperature and rainfall and (b) species distribution maps for *Chamaescilla corymbosa*.

Fig. S2. Summer dormant *Chamaescilla corymbosa* at different ages (**a**) one-year old plant (**b**) two-year old plant (**c**) three-year old plant (**d**) four-year old plant (**e**) new season's root tuber from a four-year old plant (**f**) senesced root tuber from the previous season from four-year old plant (**g**) One-year old plan. Scale bar in S2d is 20 mm.

Fig. S3. Relationship between plant age and (a) number of root tubers (b) dry weight root tuber⁻¹ and (c) root tuber dry weight plant⁻¹ for *Chamaescilla corymbosa*. The letters denote statistically significant differences (P<0.05). All values represent the mean (±SE) of n=5 biological replicates.

Fig. S4. N:P ratios for foliage, roots, root tubers and seed of *Chamaescilla corymbosa*. The letters denote statistically significant differences (P<0.05). All values represent the mean (\pm SE) of n=5 biological replicates.

Table S1.Nutrient mobilisation, investment and productivity in three to four year-oldplants of Chamaescilla corymbosa

	Effectiveness in mobilisation to new seasons tubers and seed*	Proportional investment in seed vs. tubers*	Net seasons productivity*
	[(D + E) / (B + C) x 100]	[(E / (D + E)) x 100]	[((D + E) / A) x 100]
Nutrient	%	%	%
Elements	/0	70	70
K	27	4.3	116
N	72	39.8	166
Ca	53	26.6	125
S	36	30.7	162
Mg	65	15.6	166
Р	121	48.1	217
Fe	18	15.6	128
Mn	41	12.3	172
Zn	42	15	141
Cu	88	44	180
*Data derived from Table 3			