Supplementary material for

Contrasting altitudinal trends in leaf anatomy between three dominant species in an alpine meadow

Mengying Zhong^{A,C}, *Xinqing Shao*^{A,D}, *Ruixin Wu*^B, *Xiaoting Wei*^A, *Richard S. P. van Logtestijn*^C and Johannes *H. C. Cornelissen*^C

^AGrassland Science Department, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193 Beijing, China.

^BDryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Taocheng District, 053000 Hebei, China.

^cDepartment of Systems Ecology, Institute of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.

^DCorresponding author. Email: shaoxinqing@163.com

Table S1. Effects of altitude on leaf anatomy in *Elymus nutans* and *Carex moorcroftii*, for which the traits of lower and upper leaf side are shown separately. UECA: Upper epidermal cell area (in μ m²); UECT: Upper epidermal cell thickness (in μ m); LECA: Lower epidermal cell area (in μ m²); LECT: Lower epidermal cell thickness (in μ m); UCLT: Upper cuticular layer thickness (in μ m); LCLT: Lower cuticular layer thickness (in μ m). Different letters for each component indicate statistically different mean values within species (*P* < 0.05), determined by LSD multiple comparison tests. Each anatomical trait was compared separately.

Altitude		Elymus.	nutans		Carex. moorcroftii								
(m)	UECA	UECT	LECA	LECT	UECA	UECT	UCLT	LECA	LECT	LCLT			
3064	252±8 ^{AB}	16.66±0.56 ^{BC}	216±14 ^C	15.12±0.48 ^c	1137±111 ^A	33.54±1.19 ^A	3.10±0.24 ^C	334±14 ^A	17.78±0.21 ^A	2.79±0.11 ^B			
3180	199±32 ^B	14.00±1.45 ^C	200±20 ^C	14.52±0.89 ^C	851±99 ^B	$27.32{\pm}1.73^{B}$	3.00±0.32 ^C	250±37 ^B	15.41±1.15 ^B	$2.67{\pm}0.07^{B}$			
3280	310±36 ^A	18.56±0.96 ^{AB}	304 ± 37^{AB}	17.83±1.20 ^B	403±56 ^C	$20.74 \pm 1.20^{\circ}$	3.27 ± 0.20^{AB}	124±21 ^C	9.78±0.49 ^C	$2.85{\pm}0.19^{\text{B}}$			
3371	317±23 ^A	19.64±0.86 ^A	351±23 ^A	20.53±0.90 ^A	752±57 ^B	$25.04{\pm}0.69^{B}$	4.15±0.25 ^A	171±14 ^C	13.25±0.58 ^C	2.75±0.13 ^B			
3489	272 ± 13^{AB}	17.30±0.29 ^{AB}	231±16 ^C	15.78 ± 0.66^{BC}	503±47 ^C	$21.08 \pm 0.94^{\circ}$	4.10±0.40 ^A	$153 \pm 20^{\circ}$	$12.25 \pm 0.90^{\text{CD}}$	3.45 ± 0.11^{A}			
3600	232±12 ^B	16.08±0.69 ^{BC}	$247{\pm}16^{BC}$	16.13±0.43 ^{BC}	508±51 ^C	21.60±1.02 ^C	3.68 ± 0.12^{AB}	113±5 ^C	$10.71 \pm 0.28^{\text{DE}}$	3.33±0.10 ^A			
3700	253 ± 14^{AB}	17.39±0.79 ^{AB}	242±10 ^{BC}	16.15±0.36 ^{BC}	323±32 ^C	18.17±0.75 ^C	3.70 ± 0.23^{AB}	107±5 ^C	$10.56 \pm 0.32^{\text{DE}}$	3.30±0.02 ^A			

Table S2. Stepwise multiple regression of leaf anatomy against ecological factors of three species (*Scirpus distigmaticus, Elymus nutans, Carex moorcroftii*). Epidermal cell area (in μm²); Epidermal cell thickness (in μm); Cuticular layer thickness (in μm); Mesophyll cell area (in μm²); Xylem transect area (in μm²); Phloem transect area (in μm²); STN: Soil total N (g kg⁻¹); STC: Soil total C (g kg⁻¹); AT: Air temperature (°C); AH: Air humidity (%); LI: Light intensity (klux). Significant relationships at a *P* < 0.05 level are indicated in bold. *N*=7.

Species	Leaf traits	Regression factors	Regression coefficient	R ²	Р	
	ECT	АН	0.123	0.191	0.048	
Scirpus distigmaticus	CLT	STN	-0.216	0.197	0.044	
	XTA	LI	-1.527	0.295	0.011	
	CLT	AT	-0.114	0.252	0.020	
Elymus nutans	XTA	STC	-5.311	0.287	0.012	
	РТА	STN	-101.265	0.358	0.004	
	ECA	pH	450.708	0.694	<0.001	
<i>c c c c c c c c c c</i>	ECT	pH	9.944	0.736	<0.001	
Carex moorcroftii	CLT	AT	-0.147	0.629	<0.001	
	MCA	АН	2.425	0.204	0.040	

Fig. S1. Pearson correlation between leaf traits of three species (*S. distigmaticus*, *E. nutans*, *C. moorcroftii*) in 2012. Significant relationships at a P < 0.05 level are shown with the regression line. ECA: Epidermal cell area (in μ m²); ECT: Epidermal cell thickness (in μ m); CLT: Cuticular layer thickness (in μ m); MCA: Mesophyll cell area (in μ m²); XTA: Xylem transect area (in μ m²); PTA: Phloem transect area (in μ m²).

Scirpus distigmaticus						Elymus nutans					Carex moorcroftii							
СLT		°	°	8888 8888 8888 888	ୢ୶	ૡૢૢૢૢૢૢૢૢૢૢૢૢૢૢ		0000 0		6 8 00°	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	° 880° °		- Contraction of the second se	*****	0000		
ECA			2000 00 00 00 00 00 00 00 00 00 00 00 00	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	ୢୄ ୡୢୄୄ ୡୄ	° °8 ° 68 ° 68 ° 68		,o	act and the second	000000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80°		and and a second	୍ଟ୍ରିକ୍ଷ୍ଣ କର		°°°°°°
ECT		0000000		0000000	00000 00000 00000 00000 00000	9555 9655 9655 965 965 965 965 965 965 9	000 00000	00 00 00 00 00 00 00 00 00 00 00 00 00	1	0000	00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	So Sol	Careford Re		000 000 000 000 000	&° ~ ~	000 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9
MCA	<u></u> ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦୦୦ ୧୦	°°°°°°°°°°	0000 0000 0000		000 000 000 000 000 000	00000 00000 00000	00800 00000000000000000000000000000000		0000		000 000 000 000 000	8000 0000 0000 0000 0000 0000 0000 000		66666 66666 66666 66666 66666 66666 6666	80000 80000 80000 80000		8698 8698 8698 8698	888 888 888 888 888 888 888 888 888 88
ХТА	ွန်း စို့စို့ စို့စို	688 688 689 680 680 680 690 690 690 690 690 690 690 690 690 69	6.98 88 88 88 80	60 60 60 60 60 60 60 60 60 60 60 60 60 6		0 8 0 80 0 8 0 0	0000 0000 0000			8000000		State Bar	9 000000000000000000000000000000000000		6 6 6 6 6 6 6	80° 80° 80° 80° 80° 80° 80° 80° 80° 80°		1 0000
PTA	00000000000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00	888° 8989° 8989°	8000 8000 8000000000000000000000000000	000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000000000000000000000000000000000000	0000 000000	and a start		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	000000 0000000000000000000000000000000	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	80000000000000000000000000000000000000		
	CLT	ECA	ECT	MCA	XTA	PTA	CLT	ECA	ECT	MCA	XTA	PTA	CLT	ECA	ECT	MCA	XTA	PTA

Fig. S3. Anatomy of leaves (a) and reproductive stems (b) taken from *Scirpus distignaticus* (×100)

Fig. S4. Structure of leaves (a) and reproductive stems (b) taken from *Scirpus distigmaticus* (×400). 1. Cuticular layer. 2. Epidermal cell. 3. Xylem transect. 4. Phloem transect. 5. Mesophyll cell. 6. Hollow centre.

Fig. S5. Response of length and cross-sectional area in leaf and flowering stem of *S. distignaticus* to altitude. CSA: Cross-sectional area (in μ m²). Different letters above bars for each component indicate statistically different mean values (*P* < 0.05), determined by LSD multiple comparison tests. Leaf or stem was compared separately.

Fig. S6. Regressions of length (mm) and cross sectional area (CSA in μ m²) between leaf and stem in *S*. *distigmaticus* in 2013. Significant relationships at a *P* < 0.05 level are indicated by continuous lines.

