Supplementary material for

Contrasting altitudinal trends in leaf anatomy between three dominant species in an alpine meadow

Mengying Zhong ${ }^{\mathrm{A}, \mathrm{C}}$, Xinqing Shao ${ }^{\mathrm{A}, \mathrm{D}}$, Ruixin Wu ${ }^{\mathrm{B}}$, Xiaoting Wei ${ }^{\mathrm{A}}$, Richard S. P. van Logtestijn ${ }^{\mathrm{C}}$ and Johannes H. C. Cornelissen ${ }^{\text {C }}$
${ }^{\text {A }}$ Grassland Science Department, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, 100193 Beijing, China.
${ }^{B}$ Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Taocheng District, 053000 Hebei, China.
${ }^{\text {CD Department of Systems Ecology, Institute of Ecological Science, Vrije Universiteit Amsterdam, De }}$ Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
${ }^{\text {D }}$ Corresponding author. Email: shaoxinqing@163.com

Table S1. Effects of altitude on leaf anatomy in Elymus nutans and Carex moorcroftii, for which the traits of lower and upper leaf side are shown separately. UECA: Upper epidermal cell area (in $\mu \mathrm{m}^{2}$); UECT: Upper epidermal cell thickness (in $\mu \mathrm{m}$); LECA: Lower epidermal cell area (in $\mu \mathrm{m}^{2}$); LECT: Lower epidermal cell thickness (in $\mu \mathrm{m}$); UCLT:

Upper cuticular layer thickness (in $\mu \mathrm{m}$); LCLT: Lower cuticular layer thickness (in $\mu \mathrm{m}$). Different letters for each component indicate statistically different mean values within species ($P<0.05$), determined by LSD multiple comparison tests. Each anatomical trait was compared separately

Altitude (m)	Elymus. nutans				Carex. moorcroftii					
	UECA	UECT	LECA	LECT	UECA	UECT	UCLT	LECA	LECT	LCLT
3064	$252 \pm 8^{\text {AB }}$	$16.66 \pm 0.56{ }^{\text {BC }}$	$216 \pm 14^{\text {C }}$	$15.12 \pm 0.48^{\text {C }}$	$1137 \pm 111^{\text {A }}$	$33.54 \pm 1.19^{\text {A }}$	$3.10 \pm 0.24{ }^{\text {C }}$	$334 \pm 14^{\text {A }}$	$17.78 \pm 0.21^{\text {A }}$	$2.79 \pm 0.11^{\text {B }}$
3180	$199 \pm 32^{\text {B }}$	$14.00 \pm 1.45^{\text {C }}$	$200 \pm 20^{\text {C }}$	$14.52 \pm 0.89^{\text {C }}$	$851 \pm 99^{\text {B }}$	$27.32 \pm 1.73^{\text {B }}$	$3.00 \pm 0.32^{\text {C }}$	$250 \pm 37^{\text {B }}$	$15.41 \pm 1.15^{\text {B }}$	$2.67 \pm 0.07^{\text {B }}$
3280	$310 \pm 36^{\text {A }}$	$18.56 \pm 0.96{ }^{\text {AB }}$	$304 \pm 37^{\text {AB }}$	$17.83 \pm 1.20^{\text {B }}$	$403 \pm 56^{\text {C }}$	$20.74 \pm 1.20^{\text {C }}$	$3.27 \pm 0.20^{\text {AB }}$	$124 \pm 21^{\text {C }}$	$9.78 \pm 0.49^{\text {C }}$	$2.85 \pm 0.19^{\text {B }}$
3371	$317 \pm 23^{\text {A }}$	$19.64 \pm 0.86^{\text {A }}$	$351 \pm 23^{\text {A }}$	$20.53 \pm 0.90^{\text {A }}$	$752 \pm 57^{\text {B }}$	$25.04 \pm 0.69^{\text {B }}$	$4.15 \pm 0.25^{\text {A }}$	$171 \pm 14^{\text {C }}$	$13.25 \pm 0.58^{\text {C }}$	$2.75 \pm 0.13^{\text {B }}$
3489	$272 \pm 13^{\text {AB }}$	$17.30 \pm 0.29^{\text {AB }}$	$231 \pm 16^{\text {C }}$	$15.78 \pm 0.66^{\text {BC }}$	$503 \pm 47^{\text {C }}$	$21.08 \pm 0.94{ }^{\text {C }}$	$4.10 \pm 0.40^{\text {A }}$	$153 \pm 20^{\text {C }}$	$12.25 \pm 0.90^{\text {CD }}$	$3.45 \pm 0.11^{\text {A }}$
3600	$232 \pm 12^{\text {B }}$	$16.08 \pm 0.69{ }^{\text {BC }}$	$247 \pm 16^{\text {BC }}$	$16.13 \pm 0.43^{\text {BC }}$	$508 \pm 51^{\text {C }}$	$21.60 \pm 1.02^{\text {C }}$	$3.68 \pm 0.12^{\text {AB }}$	$113 \pm 5^{\text {C }}$	$10.71 \pm 0.28^{\text {DE }}$	$3.33 \pm 0.10^{\text {A }}$
3700	$253 \pm 14^{\text {AB }}$	$17.39 \pm 0.79^{\text {AB }}$	$242 \pm 10^{\text {BC }}$	$16.15 \pm 0.36^{\text {BC }}$	$323 \pm 32^{\text {C }}$	$18.17 \pm 0.75{ }^{\text {C }}$	$3.70 \pm 0.23{ }^{\text {AB }}$	$107 \pm 5^{\text {C }}$	$10.56 \pm 0.32^{\text {DE }}$	$3.30 \pm 0.02^{\text {A }}$

Table S2. Stepwise multiple regression of leaf anatomy against ecological factors of three species (Scirpus distigmaticus, Elymus nutans, Carex moorcroftii). Epidermal cell area (in $\mu \mathrm{m}^{2}$); Epidermal cell thickness (in $\mu \mathrm{m}$); Cuticular layer thickness (in $\mu \mathrm{m}$); Mesophyll cell area (in $\mu \mathrm{m}^{2}$); Xylem transect area (in $\mu \mathrm{m}^{2}$); Phloem transect area (in $\mu \mathrm{m}^{2}$); STN: Soil total $\mathrm{N}\left(\mathrm{g} \mathrm{kg}^{-1}\right)$; STC: Soil total C $\left(\mathrm{g} \mathrm{kg}^{-1}\right)$; AT: Air temperature ($\left.{ }^{\circ} \mathrm{C}\right)$; AH: Air humidity (\%); LI: Light intensity (klux). Significant relationships at a $P<0.05$ level are indicated in bold. $N=7$.

Species	Leaf traits	Regression factors	Regression coefficient	R^{2}	P
Scirpus distigmaticus	ECT	AH	0.123	0.191	0.048
	CLT	STN	-0.216	0.197	0.044
	XTA	LI	-1.527	0.295	0.011
Elymus nutans	CLT	AT	-0.114	0.252	0.020
	XTA	STC	-5.311	0.287	0.012
	PTA	STN	-101.265	0.358	0.004
Carex moorcroftii	ECA	pH	450.708	0.694	<0.001
	ECT	pH	9.944	0.736	<0.001
	CLT	AT	-0.147	0.629	<0.001
	MCA	AH	2.425	0.204	0.040

Fig. S1. Pearson correlation between leaf traits of three species (S. distigmaticus, E. nutans, C. moorcroftii) in 2012. Significant relationships at a $P<0.05$ level are shown with the regression line. ECA: Epidermal cell area (in $\mu_{\mathrm{m}}{ }^{2}$); ECT: Epidermal cell thickness (in $\mu \mathrm{m}$); CLT: Cuticular layer thickness (in $\mu \mathrm{m}$); MCA: Mesophyll cell area (in $\mu^{\mathbf{2}}$); XTA: Xylem transect area (in μ^{2}); PTA: Phloem transect area (in μ^{2}).

Fig. S2. Leaves (a) and reproductive stems (b) of Scirpus distigmaticus. Every little degree represents $\mathbf{1} \mathbf{~ m m}$.

Fig. S3. Anatomy of leaves (a) and reproductive stems (b) taken from Scirpus distigmaticus ($\times 100$)

Fig. S4. Structure of leaves (a) and reproductive stems (b) taken from Scirpus distigmaticus ($\times 400$). 1. Cuticular layer. 2. Epidermal cell. 3. Xylem transect. 4. Phloem transect. 5. Mesophyll cell. 6. Hollow centre.

Fig. S5. Response of length and cross-sectional area in leaf and flowering stem of S. distigmaticus to altitude. CSA: Cross-sectional area (in $\boldsymbol{\mu} \mathbf{m}^{2}$). Different letters above bars for each component indicate statistically different mean values ($P<\mathbf{0 . 0 5}$), determined by LSD multiple comparison tests. Leaf or stem was compared separately.

Fig. S6. Regressions of length (mm) and cross sectional area (CSA in $\mu \mathrm{m}^{2}$) between leaf and stem in S. distigmaticus in 2013. Significant relationships at a $\boldsymbol{P}<\mathbf{0 . 0 5}$ level are indicated by continuous lines.

