10.1071/BT18222_AC © CSIRO 2019 Supplementary Material: *Australian Journal of Botany*, 2019, 67, 558–570.

The legacy of pasture improvement causes recruitment failure in grassy eucalypt woodland conservation reserves in the Midlands of Tasmania

Louise M. Romanin^{A,B}, Lynda D. Prior^A and David J. M. S. Bowman^A

^ASchool of Natural Sciences, University of Tasmania, Hobart, Tas. 7001, Australia.

^BCorresponding author. Email: lmromanin@gmail.com

Supplementary material

Appendix 1. Environmental characteristics of the land-type categories used in this study

Vegetation categories are adapted from TasVeg 3.0. Geology categories are modified from 1: 250,000 Digital Geology Tasmania map, the most common vegetation and geology type for sample points is listed first. Mean values are presented with minimum and maximum values in parentheses. WB – water balance.

						Rainfall	WB
	Land-type	Vegetation category	Geology	Elev. (m)	Slope (degrees)	(mm)	(mm)
Native Forest	Native Forest	E. viminalis, E. amygdalina, E. ovata	Jurassic dolerite, quartz	463 (249–600)	7 (0–20)	600	-173
		woodland and forest, lowland grassland complex	sandstone, basalt			(513–685)	(-322 – -34)
Conservation	Public	E. amygdalina inland forest and woodland on	Cainozoic sediments (Laterite,	212 (195–238)	2 (0–8)	487	-255
		Cainozoic deposits or on dolerite, <i>E. viminalis</i> grassy forest and woodland	sands, gravels), Jurassic dolerite			(526–589)	(-313 – - 278)
	Private Unimproved	<i>E. amygdalina</i> inland forest and woodland on Cainozoic deposits	Cainozoic sediments (Laterite, sands, gravels)	205 (174–247)			
	Private	E. amygdalina woodland on dolerite or	Quartz sandstones Jurassic	260 (233–294)	4 (1–9)	507	-345
	Improved	sandstone, E. viminalis woodland, lowland	dolerite			(499–517)	(-367 – -
		grassland complexes, agricultural land and regenerating agricultural land					310)
Production	Rangeland	Agricultural land and regenerating	Jurassic dolerite, quaternary	267 (213–335)	4 (0–13)	510	-340
		agricultural land, <i>E. viminalis</i> woodland, <i>E. amygdalina</i> woodland on dolerite or sandstone, lowland grassland complexes	sediments, quartz sandstone			(499–534)	(-373 – - 293)
		Bursaria-Acacia scrub					
	Improved	Agricultural land, lowland Poa grassland, E.	Basalt, Jurassic dolerite, quartz	217 (196–293)	2 (0–7)	497	-372
	Pasture	viminalis grassy forest and woodland, E. amygdalina woodland on dolerite	sandstone			(401–511)	(-390 – - 338)

Appendix 2. Summary of the statistical models exploring the relationship of tree density in different size classes as a function of land-type

The response variable was the count of trees in each 10-cm DBH class in each transect for each land-type. SC indicates size class, df shows the number of parameters for each model, Δ AlCc the difference between the model AlCc and the minimum AlCc in the set of models, and AlCc weights (w_i) indicate the relative support for model i.

	df	E. amy	gdalina	E. vimino	alis	A. dealb	ata	B. marginata		
Model		ΔAICc	wi	ΔAICc	wi	ΔAICc	wi	ΔAICc	wi	
SC * land-type	12	0.0	0.969	0.0	1	0.0	1	7.0	0.029	
SC + land-type	8	6.9	0.031	44.3	<0.001	49.1	<0.001	0.0	0.971	
SC	4	132	<0.001	81.4	<0.001	143	<0.001	21.1	<0.001	
Land-type	7	623	<0.001	285.7	<0.001	500	<0.001	74.5	<0.001	
Null	3	743	<0.001	326.0	<0.001	584	<0.001	97.8	<0.001	

Appendix 3. Density (mean ± s.e.) of live trees by species in five of the six land-type categories.

Improved Pasture land-type is excluded as there were only 13 live *E. viminalis* trees, all at one transect. The number of transects (n) where the species was present is listed. Densities for individual species are averaged for only the plots where the species was present. The species in bold are those used in the statistical analysis. Dashes indicate a species is absent from a land-type category. 'n.a.' indicates not applicable.

Land-type							Private	Unimprove	ed	Privat	e Improved	t			
	Native Forest			Public Conservation			Cons	servation		Conservation			Ra	ngeland	
	n			n			n			п			n		
	(transects/	density		(transects/	density		(transects/	density		(transects/	density		(transects/	density	
Species	52)	(ha-1)	s.e.	26)	(ha⁻¹)	s.e.	15)	(ha⁻¹)	s.e.	20)	(ha⁻¹)	s.e.	46)	(ha⁻¹)	s.e.
Acacia dealbata	35	503	81	21	158	30	15	190	36	3	553	283	9	92	55
Acacia mearnsii	6	40	20	3	60	17	-	-	-	2	15	5	8	103	65
Acacia melanoxylon	4	23	6	-	-	-	-	-	-	-	-	-	-	-	-
Acacia – unidentified	1	70	n.a.	2	140	70	-	-	-	-	-	-	-	-	-
Allocasuarina littoralis	2	10	0	10	33	8	4	81	47	-	-	-	2	15	5
Banksia marginata	2	10	0	14	136	44	7	304	125	-	-	-	2	10	0
Bursaria spinosa	9	34	16	1	10	n.a.	-	-	-	1	10	n.a.	-	-	-
Coprosma quadrifida	6	15	3	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus amygdalina	23	239	52	23	147	16	14	148	24	1	40	n.a.	-	-	-
Eucalyptus delegatensis	5	228	91	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus globulus	1	480	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus ovata	6	50	32	6	22	5	-	-	-	-	-	-	-	-	-
Eucalyptus pauciflora	4	13	3	-	-	-	3	28	12	-	-	-	1	40	n.a.
Eucalyptus tenuiramis	1	200	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus viminalis	36	76	13	14	33	13	14	26	7	9	43	11	8	36	15
Eucalyptus - unidentified	2	10	0	3	13	3	1	5	n.a.	-	-	-	-	-	-
Exocarpos cupressiformis	1	10	n.a.	2	25	5	3	8	3	1	10	n.a.	-	-	-
Leptomeria drupacea	-	-	-	-	-	-	1	15	n.a.	-	-	-	-	-	-
Olearia argophylla	1	10	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
Ozothamnus sp.	2	10	0	-	-	-	-	-	-	-	-	-	-	-	-

Appendix 4. Summary of the statistical models exploring the relationship between tree seedling density as a function of land-type for three dominant genera; *Eucalyptus, Acacia, Banksia*.

The response variable was the count of seedlings in each transect for each land-type. df shows the number of parameters in each model, $\Delta AICc$ the difference between the model AICc and the minimum AICc in the set of models, and AICc weights (w_i) indicate the relative support for model i.

		Eucalyptus		Acacia		Banksia		
	df	ΔAICc	Wi	ΔAICc	Wi	ΔAICc	Wi	
Land-type	7	0.0	1	0.0	1	0.0	1	
null	2	75.5	<0.001	19.3	< 0.001	31.8	<0.001	

Appendix 5. Density and standard error (s.e.) by species of seedlings in five of the six land-type categories No seedlings were found at the Improved Pasture land-type. As for Appendix 3 except for seedlings. Only live seedlings were recorded. 'n.a.' indicates not applicable.

Land-type							Private	Unimprove	ed	Privat	e Improved	ł			
	Nat	ive Forest		Public (Conservatio	on	Con	servation		Conservation			Ra	ingeland	
	n	density		п	density		n	density		п	density		п	density	
Species	(plots/ 52)	(ha⁻¹)	s.e.	(plots/ 26)	(ha⁻¹)	s.e.	(plots/ 15)	(ha⁻¹)	s.e.	(plots/ 20)	(ha⁻¹)	s.e.	(plots/ 46)	(ha⁻¹)	s.e.
Acacia dealbata	22	2036	572	16	713	202	13	415	72	3	1666	796	4	3624	1888
Acacia mearnsii	2	100	0	2	250	150	-	-	-	-	-	-	2	150	0
Acacia melanoxylon	1	200	n.a.	1	11700	n.a.	-	-	-	-	-	-	-	-	-
Acacia - unidentified	5	2780	1928	2	300	282	-	-	-	-	-	-	1	1000	n.a.
Allocasuarina littoralis	-	-	-	3	67	17	1	325	n.a.	-	-	-	1	200	n.a.
Banksia marginata	3	233	33	12	371	220	6	1013	455	-	-	-	2	50	0
Bursaria spinosa	8	238	74	1	100	n.a.	-	-	-	1	100	n.a.	1	50	n.a.
Coprosma quadrifida	8	625	273	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus															
amygdalina	11	614	228	19	432	100	13	192	51	-	-	-	-	-	-
Eucalyptus															
delegatensis	4	313	263	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus ovata	2	1175	1125	6	233	68	-	-	-	-	-	-	-	-	-
Eucalyptus pauciflora	2	50	0	-	-	-	-	-	-	-	-	-	1	200	n.a.
Eucalyptus tenuramis	1	200	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
Eucalyptus viminalis	15	93	19	2	50	0	6	29	4	1	50	n.a.	1	150	n.a.
Eucalyptus –															
unidentified	2	125	25	1	350	n.a.	-	-	-	-	-	-	-	-	-
Exocarpos															
cupressiformis	-	-	-	1	250	n.a.	-	-	-	-	-	-	-	-	-
Lomatia	1	1150	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
Lycium ferocissimum	-	-	-	-	-	-	-	-	-	1	150	n.a	-	-	-
Ozothamnus	1	1800	n.a.	-	-	-	-	-	-	-	-	-	-	-	-
All acacias	28	1137	331	20	931	452	13	360	72	3	250	169	6	350	36
All eucalypts	28	247	74	20	386	87	13	177	49	1	3	2.5	2	8	5
All species	38	1018	34	21	1019	59	15	750	56	4	140	19	7	190	16

Appendix 6. Summary of the statistical models exploring the relationship between tree sapling density as a function of land-type for three dominant genera; *Eucalyptus, Acacia, Banksia*.

The response variable was the count of saplings in each transect for each land-type. df shows the number of parameters in each model, $\Delta AICc$ the difference between the model AICc and the minimum AICc in the set of models, and AICc weights (w_i) indicate the relative support for model i.

		Eucaly	otus	Acacia		Banksia		
	df	ΔAICc	Wi	ΔAICc	Wi	ΔAICc	Wi	
Land-type	7	0.0	1	0.0	1	0.0	1	
null	2	72.5	< 0.001	23.1	<0.001	30.5	< 0.001	

Appendix 7. Intercept and slope estimates (and standard errors) for the statistical models of the relationship of tree density in each size class as a function of land-type for four abundant species: *Eucalyptus amygdalina, E. viminalis, Acacia dealbata, Banksia marginata.*

A negative slope indicates consistency with the negative exponential distribution. The models with a w+ > 0.73 are in bold. 'n.a.' indicates that no individuals were present.

	E. amygdalina		E. vimi	nalis	A. deal	bata	B. marg	ginata
	estimate	s.e.	estimate	e s.e. estimate s.e.		estimate	s.e.	
Native For	est							
Intercept	-1.08	0.75	0.29	0.26	5.26	0.31	-0.08	0.37
Slope	-0.43	0.03	-0.39	0.03	-1.76	0.13	-0.26	0.04
Public Con	servation							
Intercept	1.56	0.18	-1.39	0.46	4.55	0.36	1.84	0.76
Slope	-0.32	0.02	-0.26	0.05	-1.90	0.20	-1.44	0.24
Private Un	improved Co	onservatio	on					
Intercept	2.14	0.25	-0.05	0.37	5.49	0.42	1.82	1.70
Slope	-0.32	0.02	-0.26	0.04	-2.15	0.22	-1.80	0.32
Private Im	proved Cons	ervation						
Intercept	-11.09	6.15	-2.92	0.74	-6.95	2.65	n.a.	n.a.
Slope	-0.06	0.10	-0.06	0.04	-1.09	0.21	n.a.	n.a.
Rangeland								
Intercept	n.a.	n.a.	-7.57	1.87	-6.02	1.71	-11.39	6.20
Slope	n.a.	n.a.	-0.04	0.06	-0.65	0.22	0.63	1.03