Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Nickel effect on root-meristem cell division in Plantago lanceolata (Plantaginaceae) seedlings

Dolja Pavlova
+ Author Affiliations
- Author Affiliations

University of Sofia, Faculty of Biology, Department of Botany, Boulevard Dragan Tzankov 8, 1164 Sofia, Bulgaria. Email: pavlova@biofac.uni-sofia.bg

Australian Journal of Botany 65(5) 446-452 https://doi.org/10.1071/BT17054
Submitted: 26 March 2017  Accepted: 19 July 2017   Published: 24 August 2017

Abstract

The toxic effect of nickel (Ni) on cell division on root-meristem cells in seedlings of Plantago lanceolata L. was studied and compared. Seed material was collected from serpentine and non-serpentine populations of the species distributed in the Rhodope Mountains, Bulgaria. The root-tip meristem cells of germinated seeds were treated with different solutions of 0.01, 0.025, 0.05, 0.1 mM Ni as NiSO4 6H2O with distilled water for 24 h and 48 h respectively. The mitotic index decreased when Ni concentrations and exposure time increased in both type of samples. Significant differences in the mitotic indexes were found between the controls and the roots treated with Ni. The mitotic index was higher in root-meristem cells of serpentine seedlings. C-mitosis, anaphase bridges, chromosome stickiness, laggards and extrusion of nuclear material into the cytoplasm were observed in the root-tip cells treated with Ni. The percentage of aberrations generally increased in a concentration- and time-dependent manner. The percentage of the extruded nuclei was higher in cells treated with 0.05 and 0.1 mM Ni. It can be concluded that P. lanceolata seedlings on serpentine can tolerate higher Ni concentrations than can non-serpentine seedlings.

Additional keywords: abnormalities, adaptation, karyotype, mitosis, nickel toxicity.


References

Antonovics J (1972) Population dynamics of the grass Anthoxanthum odoratum on a zinc mine. Journal of Ecology 60, 351–365.
Population dynamics of the grass Anthoxanthum odoratum on a zinc mine.Crossref | GoogleScholarGoogle Scholar |

Antonovics J, Bradshaw A, Turner R (1971) Heavy metal tolerance in plants. Advances in Ecological Research 7, 1–85.
Heavy metal tolerance in plants.Crossref | GoogleScholarGoogle Scholar |

Baker AJM (1987) Metal tolerance. New Phytologist 106, 93–111.
Metal tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlCgurw%3D&md5=9fe625c08b7c36f76083fbf6a1453db2CAS |

Brooks RR (1987) ‘Serpentine and its vegetation: a multidisciplinary approach.’ (Dioscorides Press: Portland, OR).

Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiology 85, 801–803.
Nickel: a micronutrient essential for higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFSisg%3D%3D&md5=3f90d55509ef45badf17c2e517e5115dCAS |

Brune A, Dietz KJ (1995) A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations. Journal of Plant Nutrition 18, 853–868.
A comparative analysis of element composition of roots and leaves of barley seedlings grown in the presence of toxic cadmium, molybdenum, nickel, and zinc concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFyjsrk%3D&md5=b12cef0ef862a182e48ef27d1fe96a8dCAS |

Cavers PB, Bassett IJ, Crompton CW (1980) The biology of Canadian weeds. 47. Plantago lanceolata L. Canadian Journal of Plant Science 60, 1269–1282.
The biology of Canadian weeds. 47. Plantago lanceolata L.Crossref | GoogleScholarGoogle Scholar |

Chater A, Chater D (1976) Plantago, In ‘Flora Europaea. Vol.4’ (Eds T Tutin, V Heywood, N Burges, D Moore, D Valentine, S Walters, D Webb) pp. 38–44. (Cambridge University Press: Cambridge, UK).

ENSCONET (2009) ‘Seed collecting manual for wild species.’ Edn 1. Available at https://www.luomus.fi/sites/default/files/files/collecting_protocol_english.pdf [Verified in 9 March 2017]

Fiskesjö G (1988) The Allium test: an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research 197, 243–260.
The Allium test: an alternative in environmental studies: the relative toxicity of metal ions.Crossref | GoogleScholarGoogle Scholar |

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53, 1–11.
Cellular mechanisms for heavy metal detoxification and tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlKgtLw%3D&md5=5241aef34ad6693b29a0138c57abc502CAS |

Harrison S, Rajakaruna N (2011) ‘Serpentine: the evolution and ecology of a model system.’ (University of California Press: Berkeley, CA).

Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) ‘The World’s worst weeds. Distribution and biology.’ (University Press of Hawaii: Honolulu, HI).

Inceer H, Beyazoglu O (2000) Cytogenetic effects of copper chloride on the root tip cells of Vicia hirsuta (L.) S.F.Gray. Turkish Journal of Biology 24, 553–559.

Kaplan Z (1998) Relic serpentine populations of Knautia arvensis s.l. (Dipsacaceae) in the Czech Republic and an adjacent area of Germany. Preslia, Praha 70, 21–31.

Kay K, Ward K, Watt L, Schemske D (2011) Plant speciation. In ‘Serpentine: the evolution and ecology of a model system’. (Eds S Harrison, N Rajakaruna) pp. 71–95. (University of California Press: Berkeley, CA).

Kolář F, Dortová M, Lepš J, Pouzar M, Krejčová A, Štech M (2014) Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae). Plant and Soil 374, 435–447.
Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae).Crossref | GoogleScholarGoogle Scholar |

Kopittke PM, Asher CJ, Menzies NW (2007) Toxic effects of Ni2+ on growth of cowpea (Vigna unguiculata). Plant and Soil 292, 283–289.
Toxic effects of Ni2+ on growth of cowpea (Vigna unguiculata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlCjurk%3D&md5=40ce2811f9ee224213742ff509fa3361CAS |

Kozhevnikova A, Seregin I, Bystrova E, Belyaeva A, Kataeva M, Ivanov V (2009) The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 56, 242–250.
The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWmt7c%3D&md5=e48a57934873bea86fce27a6eee27d07CAS |

Kruckeberg A (1984) ‘California serpentines: flora, vegetation, geology, soil and management problems.’ (University of California Press: Berkeley, CA).

Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. Journal of Environmental Quality 30, 1949–1960.
Amelioration of nickel phytotoxicity in muck and mineral soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1SlsLo%3D&md5=c2ae9f77eef8855960bdd7dd9b62c28fCAS |

Kuta E, Jedrzejczyk-Korycinska M, Cieslak E, Rostanski A, Szczepaniak M, Migdalek G, Wasowicz P, Suda J, Combik M, Słomka A (2014) Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biology 16, 924–934.
Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOmsrvE&md5=e80c2fe322deaf1127d6f535c569f850CAS |

L’Huillier L, d’Auzac J, Durand M, Michaud-Ferrière N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Canadian Journal of Botany 74, 1547–1554.
Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFSktr4%3D&md5=676c39428af1b560bdf34e9c43deeb9dCAS |

Li Z, Cheng X, Li S, Wang S (2015) Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA. Electronic Journal of Biotechnology 18, 51–57.
Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFertLo%3D&md5=35ada9fb73fc97ec92259dcbe5ed8dc6CAS |

Liu D, Jiang W, Guo L, Hao Y, Lu C, Zhao F (1994) Effect of nickel sulfate on root growth and nucleoli in root tip cells of Allium cepa. Israel Journal of Plant Sciences 42, 143–148.
Effect of nickel sulfate on root growth and nucleoli in root tip cells of Allium cepa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslart7w%3D&md5=9eee5b02e4ec08a18f6f33c2b34a1f45CAS |

Liu D, Jiang W, Meng Q, Zou J, Gu J, Zeng M (2009) Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. Biocell 33, 25–32.

Palanisamy K, Lenin M, Ravi Mycin T (2012) Effect of Mercuric chloride on growth and cytotoxicity of soyabean Glycine max (L.) Hepper. International Journal of Toxicology and Applied Pharmacology 2, 37–41.

Pavlova D (2017) Reports. In IAPT/IOPB chromosome data 24 [extended online version]. Taxon 66, 275–277.
Reports. In IAPT/IOPB chromosome data 24 [extended online version].Crossref | GoogleScholarGoogle Scholar |

Pearse A (1960) ‘Histochemistry. Theoretical and applied.’ (J. & A. Churchill: London).

Petrova A (1995) Plantago L. In ‘Flora Reipublicae Bulgaricae, Vol. 10’. (Eds S Kozhuharov, B Kuzmanov) pp. 332–352. (Academic Press ‘Professor M. Drinov’, Bulgarian Academy of Sciences: Sofia, Bulgaria). [In Bulgarian]

Renjana PK, Anjana S, Thoppil J (2013) Evaluation of genotoxic effects of baking powder and monosodium glutamate using Allium cepa assay. International Journal of Pharmacy and Pharmaceutical Sciences 5, 311–316.

Robertson A, Meakin E (1980) The effect of nickel on cell division and growth of Brachystegia spiciformis seedlings. Kirkia 12, 115–123.

Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 48, 523–544.
Physiological aspects of cadmium and lead toxic effects on higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVSlsrY%3D&md5=aec41a50f91c33fc4a946a40b6b4c798CAS |

Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 53, 257–277.
Physiological role of nickel and its toxic effects on higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVSksbc%3D&md5=ef0301d9af763621fef03ed98e7cc29fCAS |

Sharma AK, Sharma A (1990) ‘Chromosome technique: theory and practices.’ (Butterworth: London).

Singh S, Parihar P, Singh R, Singh VP, Prasad S (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science 6, 1143
Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics.Crossref | GoogleScholarGoogle Scholar |

Sobczyk MK, Smith JAC, Pollard AJ, Filatov DA (2017) Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex. Heredity 118, 31–41.
Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslOhtrjP&md5=315674674ad7773bfd91578f79753444CAS |

Štěpánková J (1996) Karyological variation in the group Myosotis alpestris (Boraginaceae). Folia Geobotanica et Phytotaxonomica 31, 251–262.
Karyological variation in the group Myosotis alpestris (Boraginaceae).Crossref | GoogleScholarGoogle Scholar |

Troelstra SR (1992) ‘Chemical and physical characteristics of the soil of Plantago sites. In ‘Plantago: a multidisciplinary study’. (Eds PJ Kuiper, M Bos) pp. 29–48. (Springer-Verlag: Berlin).

Wasowicz P, Pielichowska M, Przedpelska-Wasowicz E, Bednarek P, Szarek-Lucaczewska G, Abratowska A, Wierzbicka M (2014) Physiological and genetic differentiation between metallicolous and non-metallicolous diploid populations of alpine Biscutella laevigata (Brassicaceae) in the Tatra Mountains in the northern Carpathian foreland. Annales Botanici Fennici 51, 227–239.

Weng LL, Lexmond TMT, Wolthoorn AA, Temminghoff EJME, Van Riemsdijk WHW (2003) Phytotoxicity and bioavailability of nickel: chemical speciation and bioaccumulation. Environmental Toxicology and Chemistry 22, 2180–2187.
Phytotoxicity and bioavailability of nickel: chemical speciation and bioaccumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotF2gt78%3D&md5=fd40450661dea246c84d2cc94afe41e9CAS |

Wierzbicka MH, Prezedpelska E, Ruzik R, Ouerdane L, Polec-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231, 99–111.
Comparison of the toxicity and distribution of cadmium and lead in plant cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFOns7w%3D&md5=365a1da3ea42d507b45bc90818fee002CAS |

Yossef RA, Hegazy MNA, Abdel-Fattah A (1998) Micronutrients in corn plants as affected by the addition N with Ni or Cd. Egyptian Journal of Soil Science 3, 427–437.

Yusuf M, Fariduddin Q, Hayat S, Ahmad A (2011) Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology 86, 1–17.
Nickel: an overview of uptake, essentiality and toxicity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFCnsg%3D%3D&md5=d44ed2a86e8cb30c63804ba4c68387a1CAS |

Zou JH, Wang M, Jiang WS, Liu H (2006) Effect of hexavalent chromium (VI) on root growth and cell division in root. Pakistan Journal of Botany 38, 673–681.