Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

High fruit sets in a rewardless orchid: a case study of obligate agamospermy in Habenaria

Wenliu Zhang A B and Jiangyun Gao A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilisation of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China.

B Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.

C Corresponding author. Email: jiangyun.gao@ynu.edu.cn

Australian Journal of Botany 66(2) 144-151 https://doi.org/10.1071/BT17182
Submitted: 26 September 2017  Accepted: 17 February 2018   Published: 13 March 2018

Abstract

Low fruit set and pollination limitation are common characteristics of non-autogamous orchids, especially in rewardless species. The flowers of many Habenaria species are often characterised by long spurs and are mostly pollinated by long-tongued hawkmoths or butterflies. Unlike the flowers of other Habenaria species, the flowers of Habenaria malintana (Blanco) Merr. have very short spurs with no nectar or scent; however, this species is able to maintain high fecundity in south-west China. Breeding system experiments suggested that H. malintana is an obligate agamospermous orchid. Seed set did not need to be triggered by pollen grain deposition on stigmas, and ~100% fruit set was found in different populations and years. In pollen germination experiments, hand-deposited pollen failed to germinate on stigmas. The flowers of H. malintana failed to attract any pollinators, as we did not observe any floral visitors, and no pollinia removal or deposition occurred in both 2013 and 2014 at two study sites. These results strongly suggested that H. malintana has completely abandoned sexual reproduction and has adopted obligate agamospermy to achieve high reproductive output. We suggest that this strategy may have evolved to provide reproductive assurance and reduce the cost of flowers in response to unreliable pollinator service.

Additional keywords: breeding system, fruit set, Orchidaceae.


References

Ackerman JD, Zimmerman JK (1994) Bottlenecks in the life histories of orchids: resources, pollination, population structure, and seedlings establishment. In ‘Proceedings of the 14th world orchid conference’. (Ed. AM Pridgeon) pp. 138–147. (HMSO: Edinburgh, UK)

Asker S (1979) Progress in apomixis research. Hereditas 91, 231–240.
Progress in apomixis research.Crossref | GoogleScholarGoogle Scholar |

Asker S, Jerling L (1992) ‘Apomixis in plants.’ (CRC press: Boca Raton, FL, USA)

Batista JAN, Bianchetti LD, Miranda ZD (2006) A revision of Habenaria section Macroceratitae (Orchidaceae) in Brazil. Brittonia 58, 10–41.
A revision of Habenaria section Macroceratitae (Orchidaceae) in Brazil.Crossref | GoogleScholarGoogle Scholar |

Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. The Plant Cell 16, S228–S245.
Understanding apomixis: recent advances and remaining conundrums.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFWltbg%3D&md5=7a05b695c2497be85e21bd9ddef4a1d6CAS |

Campacci TVS, Castanho CT, Oliveira RLF, Suzuki RM, Catharino ELM, Koehler S (2017) Effects of pollen origin on apomixis in Zygopetalum mackayi orchids. Flora 226, 96–103.
Effects of pollen origin on apomixis in Zygopetalum mackayi orchids.Crossref | GoogleScholarGoogle Scholar |

Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Botanical Journal of the Linnean Society 61, 51–94.
Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony.Crossref | GoogleScholarGoogle Scholar |

Chen SC, Cribb PJ (2009) Habenaria Willdenow. In ‘Flora of China. Vol. 25’. (Eds ZY Wu, PH Raven, DY Hong) pp. 144–160. (Science Press: Beijing)

Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends in Ecology & Evolution 20, 487–494.
Orchid diversity: an evolutionary consequence of deception?Crossref | GoogleScholarGoogle Scholar |

Dafni A (1992) ‘Pollination biology: a practical approach.’ (Oxford University Press: Oxford, UK)

Dante SK, Brandon SS, Lonnie WA (2013) Evidence of deterministic assembly according to flowering time in an old-field plant community. Functional Ecology 27, 555–564.
Evidence of deterministic assembly according to flowering time in an old-field plant community.Crossref | GoogleScholarGoogle Scholar |

Darlington CD (1939) ‘The evolution of genetic systems.’ (Cambridge University Press: Cambridge, UK)

Darwin C (1862) ‘On the various contrivances by which British and foreign orchids are fertilized by insects.’ (Murray: London)

de Wet JMJ, Stalker HT (1974) Gametophytic apomixis and evolution in plants. Taxon 23, 689–697.
Gametophytic apomixis and evolution in plants.Crossref | GoogleScholarGoogle Scholar |

Eckert CG, Samis KE, Dart S (2006) Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In ‘Ecology and evolution of flowers’. (Eds LD Harder, SCH Barrett) pp. 183–203. (Oxford University Press: New York)

Faegri K, van der Pijl L (1979) ‘The principles of pollination ecology.’ (Pergamon Press: Oxford, UK)

Fehrer J, Gemeinholzer B, Chrtek J, Bräutigam S (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular Phylogenetics and Evolution 42, 347–361.
Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbjO&md5=f2558180879d4c0b612826fee78e41a0CAS |

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics 35, 375–403.
Pollination syndromes and floral specialization.Crossref | GoogleScholarGoogle Scholar |

Govaerts R (2014) ‘World checklist of Orchidaceae.’ Royal Botanic Gardens, Kew. Available at http://apps.kew.org/wcsp/ [Verified 10 September 2017].

Grant V (1981) ‘Plant speciation.’ (Columbia University Press: New York)

Haber WA, Frankie GW (1989) A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21, 155–172.
A tropical hawkmoth community: Costa Rican dry forest Sphingidae.Crossref | GoogleScholarGoogle Scholar |

Hogan KP (1983) The pollination biology and breeding system of Aplectrum hyemale (Orchidaceae). Canadian Journal of Botany 61, 1906–1910.
The pollination biology and breeding system of Aplectrum hyemale (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E (2014) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Critical Reviews in Plant Sciences 33, 414–427.
Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics.Crossref | GoogleScholarGoogle Scholar |

Hörandl E (2011) Evolution and biogeography of alpine apomictic plants. Taxon 60, 390–402.

Hörandl E, Hojsgaard D (2012) The evolution of apomixis in angiosperms: a reappraisal. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 146, 681–693.
The evolution of apomixis in angiosperms: a reappraisal.Crossref | GoogleScholarGoogle Scholar |

Huang SQ, Lu Y, Chen YZ, Luo YB, Delph LF (2009) Parthenogenesis maintains male sterility in a gynodioecious orchid. American Naturalist 174, 578–584.
Parthenogenesis maintains male sterility in a gynodioecious orchid.Crossref | GoogleScholarGoogle Scholar |

Ikeuchi Y, Suetsugu K, Sumikawa H (2015) Diurnal skipper Pelopidas mathias (Lepidoptera: Hesperiidae) pollinates Habenaria radiata (Orchidaceae). Entomological News 125, 7–11.
Diurnal skipper Pelopidas mathias (Lepidoptera: Hesperiidae) pollinates Habenaria radiata (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Internicola AI, Bernasconi G, Gigord LDB (2008) Should food-deceptive species flower before or after rewarding species? An experimental test of pollinator visitation behaviour under contrasting phenologies. Journal of Evolutionary Biology 21, 1358–1365.
Should food-deceptive species flower before or after rewarding species? An experimental test of pollinator visitation behaviour under contrasting phenologies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnhtFGluw%3D%3D&md5=527d96d4e7edc09577025fc2a1233f49CAS |

Johnson SD (1995) Observations of hawkmoth pollination in the South African orchid Disa cooperi. Nordic Journal of Botany 15, 121–125.
Observations of hawkmoth pollination in the South African orchid Disa cooperi.Crossref | GoogleScholarGoogle Scholar |

Kant R, Verma J (2012) Obligate apomixis in Zeuxine strateumatica (Lindl.) Schltr. (Orchidaceae). Vegetos 25, 274–277.

Knudson L (1946) A new nutrient solution for the germination of orchid seed. American Orchid Society Bulletin 15, 214–217.

Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annual Review of Plant Biology 54, 547–574.
Apomixis: a developmental perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSnsrk%3D&md5=7121a4af12b81b7dfd43a8190b2e17eaCAS |

Kurzweil H (2009) The genus Habenaria (Orchidaceae) in Thailand. Thai Forest Bulletin (Botany) 37, 7–105.

Lauzer DG, St-Arnaud M, Barabe D (1994) Tetrazolium staining and in vitro germination of mature seeds of Cypripedium acaule (Orchidaceae). Lindleyana 9, 197–204.

Leblanc O, Grimanelli D, Hernandez-Rodriguez M, Galindo PA, Soriano-Martinez AM, Perotti E (2009) Seed development and inheritance studies in apomictic maize–Tripsacum hybrids reveal barriers for the transfer of apomixis into sexual crops. The International Journal of Developmental Biology 53, 585–596.
Seed development and inheritance studies in apomictic maize–Tripsacum hybrids reveal barriers for the transfer of apomixis into sexual crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSmsLfN&md5=0c30ec69cacfc2e4d6cdee30da2c749dCAS |

Lloyd DG (1984) Variation strategies of plants in heterogeneous environments. Biological Journal of the Linnean Society. Linnean Society of London 21, 357–385.
Variation strategies of plants in heterogeneous environments.Crossref | GoogleScholarGoogle Scholar |

Luyt R, Johnson SD (2001) Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Plant Systematics and Evolution 228, 49–62.
Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity.Crossref | GoogleScholarGoogle Scholar |

Ma S, Wang Y, Ye X, Zhao N, Liang C (2001) Progress in study of apomixis in monocotyledonous plants. Chinese Bulletin of Botany 19, 530–537.

Mogie M (1988) A model for the evolution and control of generative apomixis. Biological Journal of the Linnean Society. Linnean Society of London 35, 127–153.
A model for the evolution and control of generative apomixis.Crossref | GoogleScholarGoogle Scholar |

Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biological Journal of the Linnean Society. Linnean Society of London 35, 155–168.
Sexual and asexual Taraxacum species.Crossref | GoogleScholarGoogle Scholar |

Naumova TN (1993) ‘Apomixis in angiosperms: nucellar and integumentary embryony.’ (CRC Press: Boca Raton, FL, USA)

Neiland MRM, Wilcock CC (1994) Reproductive ecology of European orchids. In ‘Proceedings of the 14th world orchid conference’. (Eds C Marshall, J Grace) pp. 138–147. (HMSO: London)

Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Critical Reviews in Plant Sciences 25, 199–214.
Apomixis: developmental characteristics and genetics.Crossref | GoogleScholarGoogle Scholar |

Pedron M, Buzatto CR, Singer RB, Batista JA, Moser A (2012) Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern Brazil. Botanical Journal of the Linnean Society 170, 141–156.
Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Peter CI, Johnson SD (2009) Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae). South African Journal of Botany 75, 791–797.
Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Peter CI, Coombs G, Huchzermeyer CF, Venter N, Winkler AC, Hutton D, Papier LA, Dold AP, Johnson SD (2009) Confirmation of hawkmoth pollination in Habenaria epipactidea: leg placement of pollinaria and crepuscular scent emission. South African Journal of Botany 75, 744–750.
Confirmation of hawkmoth pollination in Habenaria epipactidea: leg placement of pollinaria and crepuscular scent emission.Crossref | GoogleScholarGoogle Scholar |

Richards AJ (2003) Apomixis in flowering plants: an overview. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 358, 1085–1093.
Apomixis in flowering plants: an overview.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szgsFSjtg%3D%3D&md5=8b214aaacd41f0cfbdbbfa236eb25623CAS |

Roberts DL (2003) Pollination biology: the role of sexual reproduction in orchid conservation. In ‘Orchid conservation’. (Eds KW Dixon, RL Barrett, P Cribb) pp. 113–136. (Natural History Publications: Kota Kinabalu, Malaysia)

Schiestl FP, Schlüter PM (2009) Floral isolation, specialized pollination, and pollinator behavior in orchids. Annual Review of Entomology 54, 425–446.
Floral isolation, specialized pollination, and pollinator behavior in orchids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFersw%3D%3D&md5=3a6a8fca1812c3fafc259320514ee8c6CAS |

Schmidt JM, Antlfinger AE (1992) The level of agamospermy in a Nebraska population of Spiranthes cernua (Orchidaceae). American Journal of Botany 79, 501–507.
The level of agamospermy in a Nebraska population of Spiranthes cernua (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Singer RB (2001) Polliantion biology of Hebenaria parviflora (Orchidaceae: Habenariinae) in southeastern Brazil. Darwiniana 39, 201–207.

Sorensen AM, Rouse D, Clements M, John P, Perotti E (2009) Description of a fertilization-independent obligate apomictic species: Corunastylis apostasioides Fitzg. Sexual Plant Reproduction 22, 153–165.
Description of a fertilization-independent obligate apomictic species: Corunastylis apostasioides Fitzg.Crossref | GoogleScholarGoogle Scholar |

Suetsugu K, Tanaka K (2014) Consumption of Habenaria sagittifera pollinia by juveniles of the katydid Ducetia japonica. Entomological Science 17, 122–124.
Consumption of Habenaria sagittifera pollinia by juveniles of the katydid Ducetia japonica.Crossref | GoogleScholarGoogle Scholar |

Teppner H (1996) Adventitious embryony in Nigritella (Orchidaceae). Folia Geobotanica 31, 323–331.
Adventitious embryony in Nigritella (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Thien LB, Utech F (1970) The mode of pollination in Habenaria obtusata (Orchidaceae). American Journal of Botany 57, 1031–1035.
The mode of pollination in Habenaria obtusata (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |

Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of the Linnean Society. Linnean Society of London 84, 1–54.
Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification.Crossref | GoogleScholarGoogle Scholar |

van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 358, 1113–1121.
Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2lsrc%3D&md5=708478ce898892dcb852aedf346f243cCAS |

van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. Regnum Vegetabile 143, 101–116.

Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. International Journal of Plant Sciences 169, 169–182.
The dynamic nature of apomixis in the angiosperms.Crossref | GoogleScholarGoogle Scholar |

Xiong YZ, Liu CQ, Huang SQ (2015) Mast fruiting in a hawkmoth-pollinated orchid Habenaria glaucifolia: an 8-year survey. Journal of Plant Ecology 8, 136–141.
Mast fruiting in a hawkmoth-pollinated orchid Habenaria glaucifolia: an 8-year survey.Crossref | GoogleScholarGoogle Scholar |

Zhang WL, Gao JY, Liu Q (2015) Habenaria vidua, a new recorded of Orchidaceae from Yunnan, China. Guihaia 35, 75–76.

Zhou X, Lin H, Fan XL, Gao JY (2012) Autonomous self-pollination and insect visitation in a saprophytic orchid, Epipogium roseum (D.Don) Lindl. Australian Journal of Botany 60, 154–159.
Autonomous self-pollination and insect visitation in a saprophytic orchid, Epipogium roseum (D.Don) Lindl.Crossref | GoogleScholarGoogle Scholar |