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Context. The plant pathogen Phytophthora cinnamomi causes severe declines in susceptible 
vegetation, including loss of plant species, vegetation structure and fauna abundance. Grasstrees 
(Xanthorrhoea spp.) are keystone species that provide optimal habitat for vertebrates and 
invertebrates and are highly susceptible to the pathogen. Although effects in the Otway Ranges 
have been assessed at specific sites, there is less knowledge across the landscape on the extent 
of loss of Xanthorrhoea australis (austral grasstree). Aims. The aims were thus to assess impacts at 
three Heathy Woodland sites and to determine the magnitude of loss of X. australis and susceptible 
species losses. Methods. Floristic composition, species cover or abundance, and basal area of 
X. australis were recorded in quadrats within treatments (uninfested, infested, post-infested 
vegetation). Analyses included floristics (PRIMER v7), significant effects (ANOSIM), species 
contribution to similarity/dissimilarity (SIMPER). Species richness and susceptible species cover 
were analysed using two-way crossed ANOVAs to detect the influence of site, treatment, and 
interactions. Key results. Species composition of uninfested vegetation was significantly different 
to infested and post-infested vegetation, with susceptible species more abundant in uninfested 
areas. Post-infested vegetation had the lowest percentage cover of susceptible species. The mean 
percentage cover of X. australis in uninfested vegetation (43%) was 10-fold greater than in infested 
areas (4.3%) and extremely low in post-infested vegetation (0.9%). Conclusions. Susceptible species 
were subject to density declines and extirpation, and the loss of X. australis resulted in major 
structural vegetation changes. Implications. These results have severe implications for heathy 
woodland communities and reliant fauna. Limiting the spread of P. cinnamomi and protecting 
grasstrees is critical for their security. 
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Introduction 

Many forest and woodland communities across the world have been affected by invasive 
plant pathogens resulting in significant changes to vegetation productivity, plant diversity, 
and ecosystem function (Castello et al. 1995; Burgess et al. 2017). The plant pathogen 
Phytophthora cinnamomi poses a major threat to both native and agricultural systems 
and is recognised as one of the world’s most significant invasive alien species (Lowe et al. 
2000). The epidemic of P. cinnamomi ‘dieback’ is a major concern in areas such as Australia, 
Europe, USA, New Zealand and South Africa (Hansen 2008; Burgess et al. 2017). 

Phytophthora cinnamomi is a soil-borne oomycete initiating root and collar rot, which 
results in the restriction of transpiration, nutrient uptake, and death of susceptible plant 
species (Dawson and Weste 1984; Marks and Smith 1991; Aberton et al. 2001). Disease 
infestation begins at the root tip of a host plant (Dawson and Weste 1984; Marks and Smith 
1991). Under favourable conditions microscopic mycelial threads penetrate the dermal 
layer of host tissue, whereas under less favourable conditions they produce chlamydospores, 
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which can survive for years within soil and dead plant 
material. Chlamydospores are the primary structure leading 
to spread of the pathogen through movement of infested 
soil and plant material (Cahill et al. 2008). 

The symptoms of ‘phytophthora dieback’ vary widely 
between hosts but can include leaf chlorosis, root and collar 
lesions and retarded growth of plants (Podger et al. 1965; 
Podger 1968; Marks and Smith 1991; Podger and Vear 1998; 
Cahill et al. 2008). Three factors, the presence of the pathogen, 
a susceptible plant host and favourable environmental condi-
tions for infection, known as the disease triangle, determine 
whether reproduction and spread of the pathogen is 
successful (Cahill et al. 2008). The inclusion of time then 
reveals that the longer an optimal environment persists, 
the more likely the disease will occur and further spread 
(Cahill et al. 2008). However, although zoospore infection 
is favoured by seasonal rain, symptom development is 
exacerbated by seasonal water stress, thus weather patterns 
can significantly affect disease development and vegetation 
changes. 

The lethal epidemic of ‘phytophthora dieback’ can impact 
plant species richness and abundance, consequently altering 
the structure of sclerophyllous vegetation throughout 
Australia (Weste 1974; Weste et al. 2002). In the majority of 
cases this directly causes significant decline in plant species, 
loss of susceptible flora, degradation of fauna habitat, fauna 
declines and ecosystem deterioration (Wilson et al. 1994, 
2009; Garkaklis et al. 2004; Wilson et al. 2020). 

Phytophthora cinnamomi was first identified in Australia in 
1930 and research in the jarrah (Eucalyptus marginata) forests 
of Western Australia in 1965 described it causing the 
epidemic disease ‘phytophthora dieback’ (Podger et al. 
1965; Podger 1968; Marks and Smith 1991; Podger and Vear 
1998). The pathogen is now widespread in Australia and 
reported in all states and territories (O’Gara et al. 2005). 
Within natural systems, the disease is listed as a ‘key 
threatening process’ to the Australian environment under the 
Environment Protection and Biodiversity Conservation Act 
1999 (Cth) (EPBC) (Environment Australia 2001). Over 
1000 native plant taxa have been listed as susceptible 
(McDougall 2005) and the pathogen threatens the existence 
of ~10% of all species listed as nationally threatened under 
the EPBC Act (1999) (Commonwealth of Australia 2018b). 
Plants from the families Dilleniaceae, Epacridaceae, Fabaceae, 
Proteaceae, Myrtaceae and Asphodelaceae are most suscep-
tible to infection, conversely species from the Asteraceae and 
Poaceae families are less at risk (Cahill et al. 2008). These 
highly susceptible families are often found in heathland and 
woodland communities, where the underlying geology facili-
tates the rapid movement of P. cinnamomi through nutrient-
poor tertiary soils, which are prone to waterlogging (Wilson 
1990; Wilson et al. 1990, 1997). Species including many grasses 
can be infected but are asymptomatic hosts (Cahill et al. 2008). 

Iconic grasstrees including Xanthorrhoea australis, (austral 
grasstree), X. preissii (balga) and X. semiplana are highly 

susceptible to infection by P. cinnamomi (Aberton et al. 
2001; Weste et al. 1999; Lamont et al. 2004). These perennial 
monocotyledonous species are long lived and known for 
their arborescent trunk, inflorescences on upright spikes 
(1.5 m−2.5 m) and thin linear leaves grown in a terminal 
crown (Bedford 1986; Borsboom 2005; Lamont et al. 2004). 
They may grow over 3 metres tall, and their susceptibility is 
due to the species possessing a large surface area of fleshy 
adventitious roots within the soil (Weste et al. 1999; Aberton 
et al. 2001). Infection begins when the root epidermis is 
rapidly colonised by zoospores. Hyphae then move both intra-
and intercellularly within the cortex, xylem and phloem 
vessels, resulting in decline of water uptake (Cahill and 
Weste 1983; Cahill et al. 1985, 1989). Visual disease symptoms 
observed in the field are similar to that of drought stress, 
including yellowing of leaves, browning and total crown and 
trunk collapse (Aberton et al. 2001). In most cases, plants 
will die rapidly between 6 and 12 months after first 
exhibiting disease symptoms. 

There is evidence that grasstrees are used by many 
vertebrate and invertebrate species (Borsboom 2005). 
Grasstrees provide optimal habitat for some small native 
mammal species, supplying dense skirts as refuge from 
weather and predation and protection for nesting sites 
(Garkaklis et al. 2004; Marchesan and Carthew 2004; Laidlaw 
and Wilson 2006; Swinburn et al. 2007; Armistead 2008). 
Species such as the southern bush rat (Rattus fuscipes) and 
Kangaroo Island dunnart (Sminthopsis aitkeni) use grasstrees 
for shelter (Marchesan and Carthew 2004; Frazer and Petit 
2007) and species such as the mardo (Antechinus flavipes), 
southern brown bandicoot (Isoodon obesulus) and northern 
bettong (Bettongia tropica) use grasstrees for nest sites 
(Paull 1993; Vernes and Pope 2001; Swinburn et al 2007; 
Armistead 2008). 

A National Threat Abatement Plan for the disease caused 
by P. cinnamomi has been developed with major priorities 
to promote the recovery of threatened species and ecological 
communities under threat and to limit the spread of the 
pathogen into areas where it may lead to further species or 
communities becoming threatened (Environment Australia 
2001; Commonwealth of Australia 2018b). There are a 
range of methods to minimise the spread of the pathogen to 
uninfested sites, by restricting access, implementing hygiene 
procedures when entering and exiting uninfested sites; and to 
alleviate the impact at infested sites, by application of the 
biodegradable fungicide phosphite, which effectively reduces 
or prevents infestation (Shearer and Tippett 1989; Hardy et al. 
2001; Cahill et al. 2008; Barrett and Rathbone 2018; 
Commonwealth of Australia 2018a; Havlin and Schlegel 
2021). The strategic application of phosphite has been 
shown to reduce the rate of autonomous spread of the 
pathogen, enhance the survival of susceptible species and 
ameliorate impacts on plant community structure (Barrett 
and Rathbone 2018; Commonwealth of Australia 2018a). 
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Diseased vegetation infected with P. cinnamomi was first 
observed in the Otway Ranges of southern Victoria in 1972 
(Land Conservation Council 1985; Wilson 1990; Wilson et al. 
1990, 1997). Dieback disease symptoms have been observed 
in heathy open forest, heathy woodland, Bald Hills heathland 
and riparian open forest (Wark et al. 1987; Laidlow and 
Wilson 1989; Wilson et al. 1990, 2000, 2003; Annett 2008). 
An assessment of the relationship between site factors and 
the distribution of P. cinnamomi found that the pathogen was 
widespread, occurring at 76% of sites, and that presence was 
negatively associated with elevation and positively associated 
with a sun index (Wilson et al. 2000, 2003). A detailed 
examination of the floristic and structural changes in 
heathland communities was undertaken at two sites within 
the eastern Otways from 1988 to 1995 (Laidlaw and Wilson 
2003). The pathogen significantly affected not only the 
floristic diversity, but also vegetation structure in the area. 
Diseased vegetation, when compared with non-diseased 
areas, had less cover of the austral grasstree Xanthorrhoea 
australis and shrub species, and a greater cover of sedges, 
grasses and open ground. Structural differences observed 
included a decline in cover in diseased vegetation, between 
0- and 0.6-m height strata. Studies on the impacts of 
P. cinnamomi on small mammals found capture frequency 
was lower in post-disease areas and captures of individual 
species (Antechinus agilis (agile Antechinus), Rattus fuscipes, 
(bush rat), Rattus lutreolus (swamp rat) and Sminthopsis 
leucopus (white-footed dunnart)) were greatest in non-
diseased vegetation and were less frequent in areas of diseased 
vegetation. Radio-tracking studies found that X. australis 
provided important nesting sites for three species; Antechinus 
agilis, Cercartetus nanus (eastern pygmy possum) and 
Sminthopsis leucopus (Garkaklis et al. 2004; Laidlaw and 
Wilson 2006). 

Long-term studies (26 years) of disease progression and 
impacts on vegetation floristics and structure in a heathy 
woodland site found that disease progressed dramatically 
between 1989 and 2005, and by 2015 only 0.08% of the 
site was non-diseased (Wilson et al. 2020). There were 
significant declines in plant species richness and numbers 
of susceptible species such as X. australis and increases in 
percentage cover of resistant sedges and grasses overall, 
and in cover of Leptospermum continentale (prickly tea-tree) 
in post-disease areas. 

Much of the long-term work was conducted at few sites 
thus the objective here was to assess impacts at three 
sites more widely distributed across Heathy Woodlands. 
Specifically the aim was to determine susceptible species 
losses post-infestation across the landscape; and assess any 
differences, thus contributing to preceding work conducted 
at few sites. 

A major focus in this paper was on the extent of loss of the 
keystone species X. australis. Although previous research 
revealed the significant role of X. australis within the land-
scape in providing refuge for many small mammal species 

there had been no estimation of the extent of loss. Our basal 
area data provides a baseline to monitor future loss and thus 
this work increases understanding of the integral relationship 
between grasstrees and overall ecosystem health and function. 

Materials and methods 

Study region 
The study was conducted in the Anglesea Heathlands, an area 
of more than 7000 hectares within the Great Otway National 
Park, Victoria, Australia (Fig. 1). The underlying geology is 
associated with nutrient-poor soils, which include aeolian 
or outwash sands and tertiary sand/clay (Land Conservation 
Council 1985). The region has a mean annual rainfall 
of 620.4 mm and mean temperature of 18.4°C (Bureau of 
Meteorology 2021). The heathlands are a biodiversity hotspot 
comprising over 700 plant species, equivalent to one quarter 
of Victoria’s total floral diversity (Carr 2017; Wilson et al. 
2020). All study sites were located within Ecological 
Vegetation Class (EVC) 48, Heathy Woodland (Victorian 
Government Department of Sustainability and Environment 
2004). Heathy woodlands are typified by low woodland 
tree species, predominantly Eucalyptus obliqua (messmate 
stringybark) with a canopy to 10 m in height and average 15% 
cover. The understorey supports a diverse array of sclero-
phyllous shrubs and graminoids, as well as many endemic 
species, and 31% of Victoria’s native orchid species. (Forster 
and McDonald 2009; Carr 2017). 

The three sites selected for this study (Fig. 1) represent 
locations previously unsampled where there was a known 

Fig. 1. Map of the eastern Otways showing location of the three study 
sites 1 (Edwards Creek Track), 2 (Hurst Rd 1), 3 (Hurst Rd 2) within the 
Anglesea Heathy Woodlands. Map inset: location within Victoria. 
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infestation front, as well as uninfested and post-infested 
vegetation were: 

• Site 1 (Edwards Creek Track); approximately 25 metres 
north of Bald Hills Rd (38°22 037.6″S 144°06 041.8″E). The 
site occurs on a northern facing slope, providing favourable 
conditions for X. australis growth, and a warm and wet 
environment for the potential spread of P. cinnamomi. 
Phytophthora cinnamomi infestation appears closely linked 
with the nearby management vehicle track and illegal 
mountain biking trails. 

• Site 2 (Hurst Rd 1) retains a high density of X. australis. It is  
located 50 metres north-west of Hurst Rd (38°23 004.6″S 
144°13 035.4″E) on a north-west facing slope, with 
P. cinnamomi infestation closely linked with the nearby 
management vehicle track and mountain biking trails, 
developed by management within the Great Otway National 
Park. 

• Site 3 (Hurst Rd 2) is situated 200 metres east of Hurst Rd 
(38°23 019.7″S 144°13 031.8″E), on a southern facing slope. 

Earlier work in the area provided extensive information on 
the assessment of Phytophthora and dieback bike trails 
and development of Standard Operations for management 
of the pathogen (Wilson and Garkaklis 2019a, 2019b). The 
mechanisms for spread of the pathogen identified along the 
tracks included erosion, compaction and ponding following 
rain that spread the inoculum. Pathogen sampling found 
that areas visually assessed as Phytophthora dieback free did 
not have P. cinnamomi present. Samples from areas assessed 
as likely to be infested with the pathogen returned positive 
results. Importantly, P. cinnamomi identification did occur 
from directly on the track itself. 

Study design 
At each of the three sites, three treatment classes were 
identified. (1) Uninfested – sites free from any symptoms of 
Phytophthora ‘dieback’ disease, (2) Infested – sites which 
exhibited active ‘dieback’ symptoms, chlorotic and dead 
plants, (3) Post-infested – sites where there were no symptoms 
of active ‘dieback’, an absence of living indicator species such 
as X. australis and Isopogon ceratophyllus (horny cone-bush), 
and dead stumps of X. australis present (indicating the prior 
presence of X. australis on these sites). Stratified random 
sampling was implemented to independently sample within 
each treatment class and provide an accurate representation 
of vegetation floristics at each site. To align with strict 
hygiene protocols, all vegetation surveys were conducted 
within uninfested treatments prior to moving into infested 
and post-infested areas. 

Pathogen sampling 
Soil baiting was undertaken utilising methodologies described 
previously (Burgess et al. 2021). Three samples were taken per 

site from different plants displaying disease symptoms, if no 
disease symptoms were present samples were obtained from 
any plant within the quadrat, to the depth of 10 cm and 
0.5 metres away from the base of the sampled plant. These 
samples, comprising mostly of fine roots, were mixed in 
distilled water in sterile cups until combined into a slurry. 
Three 3-week-old Eucalyptus sieberi dicotyledons were added 
before covering with foil and incubating at 25°C for 5–7 days. 
The Eucalyptus sieberi dicotyledons were then surface 
sterilised and plated onto agar selective for Phytophthora 
before resealing and incubating at 25°C for 5 days. Samples 
were confirmed for P. cinnamomi presence using microscopy. 

Vegetation sampling 
To determine floristic composition and species cover or 
abundance, 10 m × 2 m quadrats were established within all 
treatment classes and replicated at all three sites. Due to the 
nature of Phytophthora spread, small quadrats (10 m × 2 m)  
were used so as to ensure each replicate quadrat fell into a 
single treatment category (no quadrats had a mix of active 
disease with non-diseased status, nor of active disease with 
post-diseased status). All vascular plant species present were 
recorded and identified to species level and percent cover 
recorded. At uninfested sites four 10 m × 10 m quadrats were 
also established and species presence recorded, to validate 
whether the 10 m × 2 m quadrats were sufficient to detect 
representative species diversity (total sample size = 105 
quadrats). 

To determine X. australis density and basal area in 
uninfested treatments, one 50 m × 50 m quadrat was 
established at each site. These 50 m × 50 m quadrats enabled 
extrapolation of basal area to basal area per hectare and 
aligned with forestry guidelines for the assessment of tree 
species (Cunningham et al. 2013). Basal area of X. australis 
individuals was measured around the trunk of plants, using 
a diameter tape 10 cm above ground level (DBA). Immature 
X. australis individuals lacking a trunk were unable to be 
measured but presence was still recorded. Xanthorrhoea 
australis basal area was also recorded for all 10 m × 2 m  
quadrats of uninfested, infested and post-infested status. 

Statistical analyses 
Analyses of floristic composition/cover data was completed 
using PRIMER v7 (Clark and Gorley 2015) and  RStudio  (R Core  
Team 2021). Two dimensional (2D) non-metric multidimen-
sional scaling (nMDS) plots were produced with 100 restarts 
using PRIMER v7, providing a visual representation of 
dissimilarity in species cover between sites and treatments. 
To test for significant effects of site and treatment class on 
vascular plant species cover, analysis of similarities (ANOSIM) 
tests with 999 permutations were also completed. Where 
ANOSIM detected significant effects, Bray–Curtis similarity 
percentages (SIMPER) analyses were conducted to identify 
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those species contributing to percentage cover similarity/ 
dissimilarity, between both site and treatment variables. 

Species richness and susceptible species cover were 
analysed using two-way crossed ANOVAs in RStudio (R Core 
Team 2021), to detect the influence of site, treatment, and 
interactions between site and treatment. Statistical assump-
tions including normal distribution and equal variances were 
checked and transformations performed where necessary. 
Data was presented in box and whisker plots using the package 
ggplot2 (Wickham 2016) and Tukey’s post hoc pairwise 
comparisons used the emmeans package (Lenth 2022). 

To determine whether basal area of Xanthorrhoea australis 
differed between uninfested, infested and post-infested 
treatments, basal area data was analysed using a two-way 
crossed ANOVA in RStudio (R Core Team 2021). All 
statistical assumptions were checked and posthoc pairwise 
comparisons tested using the emmeans package (Lenth 2022). 

Results 

Pathogen sampling 
All samples baited for the presence of P. cinnamomi in infested 
and post-infested vegetation at the study sites Edwards Creek 
and Hurst Road except two were confirmed for P. cinnamomi 
presence using microscopy (Table 1). 

Effect of Phytophthora cinnamomi on floristic 
composition 
A total of 97 individual vascular plant species were recorded 
at our sites, with 24 of these susceptible to infection by 
P. cinnamomi. Sixty-six species were identified within the 
uninfested treatments, 76 within the infested and 72 at 
post-infested. Species richness ranged from 8–34 species 
per quadrat. nMDS of species cover showed clear clustering 
by treatment class, with greater separation of uninfested plots 
from infested or post-infested plots (Fig. 2). Plots at Edwards 
Creek Track tended to be more segregated from those at Hurst 
Rd sites (irrespective of treatment class). Two-factor ANOSIM 
determined that when pooling treatments, species cover was 
significantly higher at Edwards Creek than Hurst Road sites, 
significantly higher in uninfested treatments and lowest at 
post-infested treatments (pooling sites) (R = 0.284, 
P = <0.01) and treatments (R = 0.367, P = <0.01). Pairwise 
comparisons detected significant differences among all 
treatment classes and sites (Table 2). 

SIMPER analysis of species cover detected high dissimi-
larities between treatments (uninfested to post-infested 76.46%, 
uninfested to infested 68.51%, infested to post-infested 
59.28%). When comparing uninfested to both infested and 
post-infested, three species susceptible to infection by 
P. cinnamomi contributed more than half of that dissimilarity, 
(Xanthorrhoea australis, Eucalyptus obliqua, Leptospermum 

Table 1. Samples baited for the presence of P. cinnamomi at Edwards 
Creek (EC) and Hurst Road (HR). Infested (I), post-infested (P). 

Date Sample no. Longitude Latitude P. cinnamomi 
presence (+/−) 

25/3/22 ECI1 144.06815 –38.22382 + 

25/3/22 ECI2 144.06817 –38.22378 + 

25/3/22 ECI3 144.06825 –38.22359 + 

25/3/22 ECI4 144.06823 –38.22365 + 

25/3/22 ECI5 144.06828 –38.22378 + 

25/3/22 ECI6 144.06828 –38.22371 + 

25/3/22 ECPI1 144.06824 –38.22396 − 

25/3/22 ECPI2 144.06819 –38.22403 − 

25/3/22 ECPI3 144.06801 –38.22417 + 

29/3/22 ECPI4 144.06801 –38.22428 + 

29/3/22 ECPI5 144.06796 –38.22400 + 

29/3/22 ECPI6 144.06823 –38.22415 + 

27/3/22 HRI1 144.13657 –38.23044 + 

27/3/22 HRI2 144.13655 –38.23052 + 

27/3/22 HRI3 144.13597 –38.23060 + 

27/3/22 HRI4 144.13589 –38.23065 + 

27/3/22 HRI5 144.13598 –38.23080 + 

27/3/22 HRI6 144.13597 –38.23074 + 

11/9/23 ECP1 144.06761 –38.22547 + 

11/9/23 ECP2 144.06764 –38.22542 + 

11/9/23 ECP3 144.06792 –38.22534 + 

11/9/23 ECP4 144.06795 –38.22529 + 

11/9/23 ECP5 144.06798 –38.22494 + 

11/9/23 ECP6 144.06801 –38.22488 + 

11/9/23 ECP7 144.06828 –38.22522 + 

2/10/23 ECP8 144.06831 –38.22528 + 

2/10/23 ECP9 144.06822 –38.22492 + 

2/10/23 ECP10 144.06822 –38.22486 + 

2/10/23 ECP11 144.06803 –38.22472 + 

2/10/23 ECP12 144.06796 –38.22468 + 

myrsinoides). These were less abundant at infested sites 
when compared to uninfested and less abundant at post-
infested sites, when compared to uninfested sites. The species 
with the largest contribution to that dissimilarity was 
X. australis (26% at uninfested compared to both infested 
and post-infested sites). Hurst Rd 1 presented the highest 
average cover at 21.03% (±0.60), closely followed by Hurst 
Rd 2 at 20.67% (±0.62). When comparing infested to post-
infested sites, two sedges were more abundant at post-
infested sites (Gahnia radula and Hypolaena fastigiata) 

Two-factor crossed ANOVA of species richness detected a 
significant difference between sites (d.f. = 2, F = 44.6, 
P < 0.001) and treatments (d.f. = 2, F = 31.6, P < 0.001), 
and a site × treatment interaction (d.f. = 4, F = 6.3, 
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Fig. 2. 2D non-metric multidimensional scaling (nMDS) of species cover among site and treatment classes, within 
the Anglesea Heathy Woodlands (stress = 0.12). Site 1 (Edwards Creek Track) triangles, Site 2 (Hurst Rd 1), squares, 
Site 3 (Hurst Rd 2) circles. 

Table 2. ANOSIM species cover comparison between treatments and 
at three sites in the Anglesea Heathy Woodlands (Site 1 = Edwards Creek 
Track, Site 2 = Hurst Rd 1, Site 3 = Hurst Rd 2). 

R P-value 

Treatment groups 

Global test 0.367 <0.01 

Pairwise tests Uninfested, Infested 0.419 <0.01 

Uninfested, Post-infested 0.623 <0.01 

Infested, Post-infested 0.084 0.027 

Site groups 

Global test 0.284 <0.01 

Pairwise tests Site 1, Site 2 0.417 <0.01 

Site 1, Site 3 0.365 <0.01 

Site 2, Site 3 0.091 0.031 

P < 0.001). Uninfested species richness was significantly 
lower when compared to infested and post-infested treatments 
(Fig. 3). Post hoc Tukey’s tests indicated that species richness 
in the uninfested treatments at both Hurst Rd sites was 
significantly lower than infested and post-infested treatments 
at Hurst Rd sites, and than all treatments at Edwards Creek 
Track. The post- infested treatment at Hurst Rd 2 was also 
significantly lower than all treatments at Edwards Creek 
Track. Lastly, Hurst Rd 2 infested was significantly lower 
than Edwards Creek Track post-infested (Table 3). 

A total of 24 species susceptible to infection by 
P. cinnamomi were recorded within the study (Table 4). 
Edwards Creek Track had the highest mean susceptible 
species richness at 11.1 per quadrat, Hurst Rd 1 was slightly 
lower at 8.13 and Hurst Rd 2 the lowest at 6.97 (pooling 
treatments). The mean number of susceptible species recorded 

in infested treatments was 9.6 per quadrat, in comparison to 
8.4 within post-infested, and 8.2 in uninfested treatments 
(pooling sites). 

Two-factor crossed ANOVA of susceptible species cover 
indicated no significant difference between sites (d.f. = 2, 
F = 1.8, P = 0.18), but a significant difference between 
treatments (d.f. = 2, F = 39.4, P < 0.001). No site × treatment 
interaction was detected (d.f. = 2, F = 1.1, P = 0.36). Post-
infested treatments had the lowest percentage cover of 
susceptible species (Fig. 4). Pairwise comparisons between 
treatments and sites detected that susceptible species cover in 
the uninfested treatments was significantly higher than both 
infested and post-infested treatments at all sites (Table 5). The 
only exception was Edwards Creek Track, where the infested 
treatment was not significantly different to either of the Hurst 
Rd uninfested sites. Edwards Creek Track infested was also 
significantly higher than Hurst Rd 2 post-infested (Table 5). 

Xanthorrhoea australis density 
At Edwards Creek Track 562 X. australis/X. minor individuals 
were recorded within the 50 m × 50 m uninfested (control) 
quadrat, whereas 990 were recorded at Hurst Rd 1 and 964 
at Hurst Rd 2. A 10-fold greater mean percentage cover of 
X. australis was recorded within the uninfested treatment 
class (43% ± 1.07), in comparison to the infested treatment 
(4.3% ± 0.70). Mean percentage cover was lowest within 
post-infested treatments (0.9% ± 0.11), with many quadrats 
recording zero cover. 

All X. australis individuals were mapped and P. cinnamomi 
infestation status recorded in-field using the Fulcrum data 
management platform. Overall, large infestation fronts leading 
to dieback were most evident at Edwards Creek Track. When 
pooling basal area by site, Edwards Creek Track had a mean 
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Fig. 3. Species richness grouped by site and infestation status within the Anglesea Heathy Woodland. 

Table 3. Post hoc Tukey’s matrix of species richness, detailing all 
significant (P < 0.05) site × treatment interactions. 

ECU ECI ECP H1U H1I H1P H2U H2I H2P 

ECU *** *** 

ECI *** *** ** *** 

ECP *** *** *** 

H1U 

H1I *** *** * 

H1P *** *** *** 

H2U 

H2I *** *** * 

H2P ** * 

The matrix diagonal represents the site × treatment interaction compared 
against itself. 
EC, Edwards Creek Track; H1, Hurst Road 1; H2, Hurst Road 2; U, uninfested; I, 
infested; P, post-infested. 
*P < 0.05, **P < 0.01, ***P < 0.001. 

basal area of 0.91 m2 per hectare, whereas Hurst Rd 1 and Hurst 
Rd 2 were almost four times the basal area at 3.52 m2 per 
hectare and 3.47 m2 per hectare, respectively (Fig. 5). When 
pooling data by treatment, healthy uninfested communities 
of X. australis recorded a mean basal area of 4.31 m2 per 
hectare. Infested vegetation had almost one third lower mean 
basal area with 2.8 m2 per hectare, and post-infested vegetation 
had only one fifth the basal area of uninfested sites with 0.81 m2 

per hectare. Analysis of basal area by size-class confirmed a lack 
of recent recruitment with only eight individuals <10 cm DBA 
recorded in our 10 m × 2 m quadrats, across all sites (Fig. 6). At 
both Hurst Road sites most individuals were between 10–40 cm 
DBA (Fig. 6a and b), most likely representing a pulse of 
recruitment following the Ash Wednesday fire of 1983, 
whereas at Edwards Creek track there were no individuals 
between  20  and 90 cm DBA  (Fig. 6c). 

Table 4. List of species identified within the study which were 
susceptible to infection by P. cinnamomi. 

Species Family Susceptibility rating 

Acrotriche serrulata Ericaceae S 

Allocasuarina misera Casuarinaceae S 

Amperea xiphoclada Euphorbiaceae S, FR 

Argentipallium obtusifolium Asteraceae S 

Banksia marginata Proteaceae S 

Chamaescilla corymbosa Asphodeliaceae S, FR 

Daviesia brevifolia Fabaceae S 

Dillwynia glaberrima Fabaceae S, HS 

Dillwynia sericea Fabaceae S, HS 

Epacris impressa Ericaceae S, LS 

Eucalyptus obliqua Myrtaceae S, LS 

Eucalyptus willisii Myrtaceae S 

Goodenia lanata Goodeniaceae S 

Hakea ulicina Proteaceae S 

Hibbertia fasciculata var. prostrata Dillenaceae S 

Hibbertia riparia Dillenaceae S 

Isopogon ceratophyllus Proteaceae S 

Leptospermum continentale Myrtaceae S 

Leptospermum myrsinoides Myrtaceae S 

Leucopogon virgatus Ericaceae S 

Platylobium obtusangulum Fabaceae S 

Tetratheca ciliata Elaeocarpaceae S 

Xanthorrhoea australis Asphodeliaceae S, HS 

Xanthorrhoea minor subsp. lutea Asphodeliaceae S, HS 

HS, highly susceptible; S, susceptible; LS, low susceptibility; FR, field resistant (or 
tolerant) (McDougall 2005). 

Analysis of variance of X. australis basal area in 10 m × 2m  
quadrats detected a significant difference between sites 

7 

www.publish.csiro.au/bt


B. A. Wilson et al. Australian Journal of Botany 72 (2024) BT23076 

Table 5. Post hoc Tukey’s matrix of susceptible species cover (%), 
detailing all significant (P < 0.05) site × treatment interactions. 

ECU ECI ECP H1U H1I H1P H2U H2I H2P 

ECU 

ECI * 

ECP *** *** *** 

H1U 

H1I *** ** ** 

H1P *** *** *** 

H2U 

H2I *** ** ** 

H2P *** *** *** 

The matrix diagonal represents the site × treatment interaction compared 
against itself. 
EC, Edwards Creek Track; H1, Hurst Road 1; H2, Hurst Road 2; U, uninfested; 
I, infested; P, post-infested. 
*P < 0.05, **P < 0.01, ***P < 0.001. 

Fig. 4. Susceptible species percentage cover between site and 
treatment classes in Anglesea Heathy Woodlands. 

(d.f. = 2, F = 3.36, P < 0.05) and treatment (d.f. = 2, F = 9.76, 
P < 0.01), with a site × treatment interaction (d.f. = 4, F = 3.1, 
P < 0.05). Post hoc Tukey’s tests determined that the 
uninfested treatment at both Hurst Rd sites was significantly 
higher than uninfested and post-infested at Edwards Creek 
Track and compared to post-infested at Hurst Rd 1. Hurst 
Rd 1 uninfested was also significantly higher than Hurst Rd 2 
post-infested. Other significant pairwise comparisons were 
detected (Table 6). 

Discussion 

Research on the detrimental impacts of the plant pathogen 
Phytophthora cinnamomi has been conducted in the Great 

Otway National Park since the 1970s (Wilson 1990; Wilson 
et al. 1990, 1997, 2020; Laidlaw and Wilson 2003). One 
focus has been the disease impact on the keystone species 
Xanthorrhoea australis (Aberton et al. 2001; Daniel et al. 
2005; Laidlaw and Wilson 2006; Cahill et al. 2008) but  
most of our knowledge on floristic change in the Anglesea 
Heathy Woodlands comes from relatively few sites. 

This research assessed impacts of P. cinnamomi at three 
different sites across the Heathy Woodlands. A range of 
susceptible species subject to density declines and extirpation 
have been identified, and species composition of uninfested 
vegetation was significantly different to infested and post-
infested vegetation with three susceptible species (X. australis, 
E. obliqua, B. marginata) being more abundant in uninfested 
areas. Post-infested vegetation had the lowest percentage 
cover of susceptible species. The mean percentage cover of the 
keystone species X. australis in uninfested vegetation was 
10-fold greater than infested, with post-infested vegetation 
extremely low. There was also a significant difference in 
mean basal area per hectare: uninfested (4.31 m2), infested 
(2.8 m2) and post-infested (0.81 m2). 

This research will be used to inform targeted phosphite 
application by land managers to enhance the management of 
Phytophthora cinnamomi and improve Australian biodiversity 
conservation. 

Vegetation floristics 
Site and Phytophthora cinnamomi infestation status were 
shown to influence floristic composition within the Anglesea 
Heathy Woodlands. At Site 1 (Edwards Creek Track) 
P. cinnamomi infestation was clearly linear with the track 
boundary progressing downslope through the landscape, 
characteristic as zoospores become extremely motile with 
increasing soil moisture/porosity and a decreasing gradient 
(Wilson et al. 2000, 2020; Laidlaw and Wilson 2003). Signs 
of previous vehicle entry were found surrounding the 
infestation treatment, potentially linking the spread of 
P. cinnamomi to fire management vehicles (Lewis and 
Colquhoun 2000). Species contributing most to within site 
similarity included four susceptible tree/shrub species and 
four sedge/rush species (Supplementary Table S1). Previous 
studies in the Grampians (Victoria), Kinglake (Victoria) and 
eastern Otways have detected a similar shift to sedge, rush 
and grass life forms following P. cinnamomi invasion (Weste 
et al. 2002; Barrett and Rathbone 2018; Wilson et al. 2020). 
Recreational activity including motorbike/mountain-bike riding 
was a regular occurrence at Edwards Creek Track and likely 
explains the increasing shift towards sedge dominance at 
post-infested sites. 

Access to Site 2 (Hurst Rd 1) was from a management 
vehicle track adjacent to Hurst Rd. Infestation was most likely 
linked to both the management vehicle track and recently 
implemented mountain bike trails through the landscape 
(Wilson and Garkaklis 2019b; Wilson et al. 2020). A major 
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Fig. 5. Mean basal area per hectare of X. australis between treatments over all three sites within the Anglesea 
Heathy Woodlands. Error bars represent standard deviation (±) from the mean. 

Fig. 6. Mean number of X. australis individuals in 10 m × 2 m quadrats, in 10 cm basal area size classes, at three sites within the Anglesea 
Heathy Woodlands (a) Hurst Rd 1, (b) Hurst Rd 2, (c) Edwards Creek Track. 
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Table 6. Post hoc Tukey’s matrix of Xanthorrhoea australis basal 
area, detailing all significant (P < 0.05) site × treatment interactions 
(*P < 0.05, **P < 0.01, ***P < 0.001). 

ECU ECI ECP H1U H1I H1P H2U H2I H2P 

ECU *** *** 

ECI *** 

ECP *** *** *** 

H1U 

H1I * 

H1P *** *** *** 

H2U 

H2I *** 

H2P ** * 

The matrix diagonal represents the site × treatment interaction compared 
against itself. 
EC, Edwards Creek Track; H1, Hurst Road 1; H2, Hurst Road 2; U, uninfested; I, 
infested; P, post-infested. 

contributor to increasing P. cinnamomi at Hurst Rd 1 is the 
north-western aspect of the site, as warmer temperatures 
may increase favourable conditions for disease spread 
(Wilson et al. 2000; Laidlaw and Wilson 2003). Within site 
compositional similarity was largely due to the dominance 
of X. australis, E. obliqua and Spyridium parvifolium, with only 
one sedge species, G. radula, dominating (Table S2). Disease 
impact is yet to reach the severity indicated at Edwards 
Creek Track. 

The third site (Hurst Rd 2) was located on a southern facing 
slope. The large infestation fronts recorded at this site correlate 
with the lowest species richness of all sites monitored within 
the study. Three sedge/rush species contributed to within 
site similarity (Table S1). The site has not burnt since 1983 and 
consequently, understorey species may not have received 
appropriate fire-stimulated germination cues. Lower species 
richness may reflect vegetation at a late successional 
stage (Wills  and Read 2002; Freestone et al. 2015) and  an  
interaction between the effects of burn regime and disease 
status. 

The absence of susceptible species at infested and post-
infested treatments resulted in greater within-treatment 
similarity than for uninfested treatments, and in greater 
dissimilarity between uninfested compared to both infested 
and post-infested treatments. These results highlight that 
susceptible species are being lost as Phytophthora spreads 
and that they are not recruiting post-infestation. 

In 1997, a 24-year study in the Grampians, Victoria, 
recorded regeneration of 30 susceptible species within 
previously infested areas, due to a potential decline in 
pathogen potential (Weste et al. 2002). This was associated 
with lower mean rainfall, which likely decreased zoospore 
production, and prescribed burning, which may have initiated 
obligate seeding and resprouting (Weste et al. 2002). In the 

current study, rainfall in 2020–2021 was ~100 mm above the 
average of 620.4 mm for the region, potentially contributing 
to a lack of susceptible species recruitment under enhanced 
conditions for disease spread (Bureau of Meteorology 2021). 
It is recommended that sites be monitored for disease 
spread as increased yearly rainfall during La Nina˜ weather 
patterns, combined with a warming climate, will lead to 
increased disease spread without effective management 
solutions. 

The species with the single greatest contribution to 
differences between uninfested and either infested or post-
infested treatments was Xanthorrhoea australis, clearly showing 
that subsequent to P. cinnamomi infestation X. australis density 
is not returning to pre-infestation densities at post-infested sites. 

Species richness was lowest in uninfested treatments and 
highest in post-infested treatments. These results do not align 
with other studies, as research in the Grampians, Victoria 
(Weste et al. 2002), kwongan heath, Western Australia 
(Barrett and Rathbone 2018) and banksia woodlands, Western 
Australia (Shearer and Dillon 1995, 1996), all demonstrate that 
species richness is negatively correlated with P. cinnamomi 
infestation status. Lower species richness at Hurst Road 
uninfested sites was associated with very high cover by 
X. australis, and a lack of fire at these sites since 1983 
(compared to Edwards Creek track, which had a planned burn 
in 2012). Species richness in heathy systems declines with 
time since fire (Wills and Read 2002; Freestone et al. 2015). 
Hence, a lack of space for recruitment and a lack of recruit-
ment triggers explain the patterns in richness observed in 
our study. 

Furthermore, although species richness was lower within 
the uninfested treatment class, percentage cover of susceptible 
species such as X. australis, E. obliqua, B. marginata, and 
L. myrsinoides was highest. There was a greater percentage 
cover within post-infested sites of sedges/lilies/grasses 
(SLGs), that are not impacted by P. cinnamomi infestation 
(Wilson et al. 2020). Examples of SLGs identified within the 
study include Gahnia radula, Isolepis marginata, Lepidosperma 
filiforme, Lepidosperma semiteres and Lomandra filiformis. 
Previous studies in the eastern Otways demonstrated that 
SLGs contributed ~10% of all plant species in 1989 and by 
2015 this had increased to ~20%, as a direct result of disease 
spread (Dawson et al. 1985; Weste and Kennedy 1997; Wilson 
et al. 2020). Our study confirms the shift to SLG dominated 
understoreys as a result of disease spread. 

The effect of disease on Xanthorrhoea australis 
density 
Site and Phytophthora cinnamomi infestation status was 
shown to significantly influence X. australis density within the 
Anglesea Heathy Woodlands. Uninfested treatments within 
the study recorded a mean X. australis basal area five times 
higher than post-infested treatments and post-infested treat-
ments are not showing signs of X. australis regeneration. 
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The size-class distribution of data strongly indicates a pulse of 
recruitment following the fires of 1983 and that this cohort 
has persisted better at uninfested than infested sites. Research 
in the Brisbane Ranges (Dawson et al. 1985; Weste 2003), 
NSW (McDougall and Summerell 2003) and Wilson’s 
Promontory (Bluett et al. 2003), has indicated regeneration 
of X. australis from the seed bank is possible with appropriate 
fire cues under decreased rainfall and lower temperatures. At 
the time of this study, La Nina˜ conditions resulted in higher 
rainfall. Even if appropriate fire cues occurred, it is likely 
that most X. australis seedlings would succumb to reinfestation 
and die, given the more optimal conditions for disease spread 
(Bluett et al. 2003; McDougall and Summerell 2003; Wilson 
et al. 2020). 

When comparing X. australis basal area by site the Hurst Rd 
sites recorded almost four times the density of Edwards Creek 
Track. Recreational activity such as mountain bike/motor-
bike riding is considered to be a major contributor to density 
declines at Edwards Creek Track, and the recent implemen-
tation of mountain biking trails at Hurst Rd 1 is predicted 
to result in similar declines of X. australis density. 

Two large patches of uninfested X. australis individuals 
were found at Hurst Rd 2 yet ~100 metres north, a vast 
infestation front was recorded. The disease was moving south-
west downslope, with hundreds of X. australis individuals 
displaying chlorotic symptoms. It is highly recommended 
that application of the biodegradable fungicide phosphite 
(Havlin and Schlegel 2021) be implemented by land 
managers to prevent further spread of the pathogen, protect 
uninfested grasstrees and provide support for resistance to 
the pathogen to lightly infested grasstrees. 

Implications for biodiversity and management 
Loss of grasstrees results in major structural change of 
vegetation within many landscapes (Spencer et al. 2005; 
Frazer and Petit 2007; Swinburn et al. 2007; Wilson et al. 
2020). Species such as X. australis represent the ‘old-growth’ 
mature and waning stands in heathy woodland vegetation 
(Aberton et al. 2001; Cheal 2010; Wilson et al. 2020). Previous 
studies have identified the significance of grasstree stumps 
and canopies for nesting, refuge and shelter for a range of 
native mammal species including the agile antechinus 
(Antechinus agilis), eastern pygmy possum (Cercartetus nanus), 
white-footed dunnart (Sminthopsis leucopus), bush rat (Rattus 
fuscipes), southern brown bandicoot (Isoodon obesulus 
obesulus), mardo (Antechinus flavipes leucogaster), ash-grey 
mouse (Pseudomys albocinereus) and the New Holland 
mouse (Pseudomys novaehollandiae) (Paull 1993; Laidlaw 
et al. 1996; Laidlaw and Wilson 2003, 2006; Spencer et al. 
2005; Frazer and Petit 2007; Swinburn et al. 2007; Annett 
2008; Lazenby et al. 2007; Haby et al. 2013; Smith et al. 
2018). Protecting grasstrees and limiting the spread of 
P. cinnamomi is critical not only for the protection of floral 

diversity but also for fauna species and the habitat they 
depend on. 

Currently, few techniques have been identified for the 
containment and/or eradication of Phytophthora cinnamomi 
from sites. However, treatments including host removal, 
herbicide application, fungicide application, soil fumigation 
and physical root barriers have been demonstrated to elimi-
nate the pathogen to depths of 2 m from up to 18 months 
to 8 years after treatment, some in forest sites and National 
Parks (Dunne et al. 2011; Dunstan et al 2010, 2020; Crone 
et al 2014). A fallow approach together with exposure to 
high summer soil temperatures in a mine site has also been 
found to eradicate the pathogen within 12 months on haul 
roads and result in declines in recovery from bunds and 
stockpiles but not as rapidly or to the same degree (Dunstan 
et al 2010, 2020). Although these studies demonstrate the 
potential to eradicate this pathogen, in many cases the costs 
and risks would be considered prohibitive. 

As a result, management options are often limited to 
reducing the potential for disease to spread into uninfested 
regions through hygiene procedures, and to reduce the 
impacts of current infestation through application of phosphite 
(Shearer and Tippett 1989; Hardy et al. 2001; Commonwealth 
of Australia 2018a). 

Previous research has shown that X. australis seedlings 
treated with potassium phosphonate (phosphite), display more 
intense cellular responses to challenge pathogens (Daniel et al. 
2005). Post-inoculation, the phloem-translocated phosphite 
ion limits intracellular hyphal growth of P. cinnamomi. The  
chemical initiates retraction of the cell membrane from the 
cell wall and the accumulation of electron dense substances 
around the cell wall of infected cells (Daniel et al. 2005). 
Successful phosphite treatment within the eastern Otways has 
been previously undertaken (Aberton et al. 1999; Laidlaw and 
Wilson 2003; Wilson et al. 2020). Recent targeted applica-
tions by hand and aerially across the Otways landscape by 
researchers and land managers promises to control the disease 
progress and protect the highly significant grass trees 
X. australis (Garkaklis et al. 2022; Garkaklis and Wilson 
2023; Wilson and Garkaklis 2023a, 2023b). 

Conclusion 

This study has assessed significant infestations fronts within 
the Anglesea Heathy Woodlands. Floristic surveys indicated 
a range of susceptible species subject to density declines 
and extirpation, as a direct result of P. cinnamomi infesta-
tion. Research was focused on the density of the key indicator 
species Xanthorrhoea australis. Previous research revealed its 
significant role within the landscape in providing refuge for 
many small mammal species within the Anglesea Heathy 
Woodlands and an integral relationship between the species 
and overall ecosystem health and function. Edwards Creek 
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Track has recorded a shift to vegetation dominated by SLGs, 
correlating with increasing recreational activities facilitating 
disease spread. Newly created mountain bike trails at Hurst 
Rd sites will spread the disease through the landscape and 
a similar shift in vegetation life forms is predicted without 
appropriate management. 

It is now critical that land managers deploy strategic 
phosphite application at the recorded infestation fronts, to 
reduce disease extension and impact on species assemblages. 
Following phosphite treatment, increased signage and wash 
down stations would assist land managers in controlling the 
disease front at Hurst Rd sites. This study has shown that 
susceptible species at post-infested sites are not recovering 
following P. cinnamomi infestation and therefore may 
require further aided restoration. 

Supplementary material 

Supplementary material is available online. 
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