Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Classification of Self-Organization and Emergence in Chemical and Biological Systems

Julianne D. Halley A and David A. Winkler A B
+ Author Affiliations
- Author Affiliations

A Centre for Complexity in Drug Design, CSIRO Molecular and Health Technologies, Private Bag 10, Clayton South VIC 3169, Australia.

B Corresponding author. Email: dave.winkler@csiro.au




Julianne Halley is a post-doctoral fellow funded by the Australian Stem Cell Centre and working at CSIRO Molecular and Health Technologies. Her research focusses on stem cell regulatory networks and how external and cell intrinsic factors interact to control cell fate decisions. Her Ph.D. research at Monash University focussed on how the behaviour and interaction of ants promotes collective intelligence capable of solving relevant complex problems. She discovered a new type of self-organized criticality and demonstrated that critical-like dynamics could persist in extreme non-equilibrium environments.



David Winkler is a Senior Principal Research Scientist and Project leader at CSIRO Molecular and Health Technologies. His research interests include complex systems, modelling of stem cell properties, and computational drug design. He is also an Adjunct professor at Monash University and Chairman of the Royal Australian Chemical Institute Board.

Australian Journal of Chemistry 59(12) 849-853 https://doi.org/10.1071/CH06191
Submitted: 5 June 2006  Accepted: 13 October 2006   Published: 20 December 2006

Abstract

Most chemical and biological systems are complex, but the application of complex systems science to these fields is relatively new compared to the traditional reductionist approaches. Complexity can provide a new paradigm for understanding the behaviour of interesting chemical and biological systems, and new tools for studying, modelling, and simulating them. It is also likely that some very important, but very complicated systems may not be accessible by reductionist approaches. This paper provides a brief review of two important concepts in complexity, self-organization and emergence, and describes why they are relevant to chemical and biological systems


References


[1]   G. Nicolis, Introduction to Nonlinear Science 1995 (Cambridge University Press: Cambridge).

[2]   D. Newth, J. J. Finnigan, Aust. J. Chem. 2006, 59,  841.
        | CrossRef |   

[3]   G. M. Whitesides, R. F. Ismagilov, Science 1999, 284,  89.
        | CrossRef |   

[4]   T. Vicsek, Nature 2002, 418,  131.
        | CrossRef |   

[5]   M. Kawata, Y. Toquenaga, Trends Ecol. Evol. 1994, 9,  417.
        | CrossRef |   

[6]   R. B. Laughlin, D. Pines, Proc. Natl. Acad. Sci. USA 2000, 97,  28.
        | CrossRef |   

[7]   P. A. Corning, Complexity 2002, 7,  18.
        | CrossRef |   

[8]   Y. Bar-Yam, Complexity 2004, 9,  15.
        | CrossRef |   

[9]   B. Cunningham, Phil. Sci. 2001, 68 (Suppl. 3),  S62.
        | CrossRef |   

[10]   P. Ball, The Self-Made Tapestry 2001 (Oxford University Press: New York, NY).

[11]   G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems 1977, p. 491 (John Wiley: New York, NY).

[12]   S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Eds N. F. Mott, E. C. Bullard, D. H. Wilkinson) 1961 (Clarendon Press: Oxford).

[13]   J.-L. Deneubourg, S. Goss, Ethol. Ecol. Evol. 1989, 1,  295.
         

[14]   S. Goss, S. Aron, J. L. Deneubourg, J. M. Pasteels, Naturwiss. 1989, 76,  579.
        | CrossRef |   

[15]   S. Aron, J. L. Deneubourg, S. Goss, J. M. Pasteels, in Lecture Notes in Biomathematics. Biological Motion (Eds W. Alt, G. Hoffman) 1990, pp. 533–547 (Springer: Berlin).

[16]   J. Gerhart, M. Kirschner, Cells, Embryos, and Evolution 1997, p. 642 (Blackwell: Oxford).

[17]   J. P. Crutchfield, C. R. Shalizi, Phys. Rev. E 1999, 59,  275.
        | CrossRef |   

[18]   P. V. Coveney, Philos. Trans. R. Soc. Lond. A 2003, 361,  1057.
        | CrossRef |   

[19]   N. Israeli, N. Goldenfeld, Phys. Rev. Lett. 2004, 92,  074105.
        | CrossRef |   

[20]   J. P. Crutchfield, Physica D. 1994, 75,  11.
        | CrossRef |   

[21]   E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, S. Aron, S. Camazine, Trends Ecol. Evol. 1997, 12,  188.
        | CrossRef |   

[22]   S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau, Self-Organization in Biological Systems 2001 (Princeton University Press: Princeton, NJ).

[23]   H. Haken, Synergetics 1977, p. 325 (Springer: Berlin).

[24]   T. Misteli, J. Cell Biol. 2001, 155,  181.
        | CrossRef |   

[25]   J. D. Farmer, N. H. Packard, Physica D. 1986, 22,  vii.
        | CrossRef |   

[26]   R. Ferrière, G. A. Fox, Trends Ecol. Evol. 1995, 10,  480.
        | CrossRef |   

[27]   T. Gisiger, Biol. Rev. 2001, 76,  161.
        | CrossRef |   

[28]   L. Glass, M. C. Mackey, From Clocks to Chaos: The Rhythms of Life 1988 (Princeton University Press: Princeton, NJ).

[29]   J. Gleick, Chaos 1987 (Sphere: London).

[30]   S. Kauffman, At Home in the Universe 1995 (Oxford University Press: New York, NY).

[31]   G. Parisi, Phys. World 1993, 6,  42.
         

[32]   R. V. Solé, S. C. Manrubia, M. Benton, S. Kauffman, P. Bak, Trends Ecol. Evol. 1999, 14,  156.
        | CrossRef |   

[33]   A. R. R. Papa, L. da Silva, Theory Biosci. 1997, 116,  321.
         

[34]   R. Ruthen, Sci. Am. 1993, 268,  130.
         

[35]   N. D. Theise, Exp. Hematol. 2004, 32,  25.
        | CrossRef |   

[36]   J.-M. Lehn, Science 2002, 295,  2400.
        | CrossRef |   

[37]   J. D. Halley, D. A. Winkler, submitted.

[38]   J. Skår, Philos. Trans. R. Soc. Lond. A 2003, 361,  1049.
        | CrossRef |   

[39]   P. V. Coveney, Philos. Trans. R. Soc. Lond. A 2003, 361,  1057.
        | CrossRef |   

[40]   T. De Wolf, T. Holvoet, in Engineering Self Organising Systems: Methodologies and Applications. Lecture Notes in Computer Science (Eds S. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, R. Nagpal) 2005, pp. 1–15 (Springer: Berlin).

[41]   A. S. Mikhailov, B. Hess, J. Biol. Phys. 2002, 28,  655.
        | CrossRef |   

[42]   A. Kurakin, Dev. Genes Evol. 2005, 215,  46.
        | CrossRef |   

[43]   D. S. Coffey, Nat. Med. 1998, 4,  882.
        | CrossRef |   

[44]   J. D. Halley, M. Burd, Insectes Sociaux 2004, 51,  226.
        | CrossRef |   

[45]   Y. Zhai, P. J. Kronebusch, G. G. Borisy, J. Cell Biol. 1995, 131,  721.
        | CrossRef |   

[46]   T. Mitchison, L. Evans, E. Schulze, M. Kirschner, Cell 1986, 45,  515.
        | CrossRef |   

[47]   V. Rodinov, E. Nadezhdina, G. Borisy, Proc. Natl. Acad. Sci. USA 1999, 96,  115.
         

[48]   C. Anderson, Complexity 2001, 7,  14.
        | CrossRef |   

[49]   S. Huang, Drug Discov. Today 2002, 7,  S163.
        | CrossRef |   

[50]   D. Bray, Nature 1995, 376,  307.
        | CrossRef |   

[51]   E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems 1999 (Oxford University Press: New York, NY).

[52]   J. D. Halley, M. A. Elgar, Aust. J. Zool. 2001, 49,  59.
        | CrossRef |   

[53]   M. Polley, F. Burden, D. A. Winkler, Aust. J. Chem. 2006, 59,  859.
        | CrossRef |   

[54]   R. Beckers, O. E. Holland, J.-L. Deneubourg, in Artificial Life IV. Proc. Fourth International Workshop on the Synthesis and Simulation of Living Systems 1994 (Cambridge, MA).

[55]   P.-P. Grassé, Insectes Soc. 1959, 6,  41.
        | CrossRef |   

[56]   O. Holland, C. Melhuish, Artif. Life 1999, 5,  173.
        | CrossRef |   

[57]   G. Theraulaz, E. Bonbeau, Artif. Life 1999, 5,  97.
        | CrossRef |   

[58]   G. Theraulaz, E. Bonabeau, Science 1995, 269,  686.
         

[59]   E. Bonabeau, S. Guérin, D. Snyers, P. Kuntz, G. Theraulaz, Biosystems 2000, 56,  13.
        | CrossRef |   

[60]   M. Dorigo, E. Bonabeau, G. Theraulaz, Future Gen. Comp. Syst. 2000, 16,  851.
        | CrossRef |   

[61]   M. Dorigo, G. D. Caro, L. M. Gambardella, Artif. Life 1999, 5,  137.
        | CrossRef |   



Rent Article (via Deepdyve) Export Citation Cited By (5)